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Decision problems

Informally, a computational decision problem is a yes/no question
asked about an input which can be encoded as a string.
Some examples:

Given three matrices A,B,C , does AB = C?

Given two graphs, are they isomorphic?

Given a graph, is it possible to assign one of three colors to
each vertex such that no adjacent vertices have the same
color?

Given a state in the board game Hex, does the first player win
under optimal play?
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Decision problems, II

One of the main goals of complexity theory is to classify how hard
problems are to solve. In order to give a notion of solving a
problem, let’s be more precise about what a problem is.

Definition (Decision problem)

Fix some finite alphabet Σ. Let Σ∗ be the set of finite strings with
characters from Σ. A decision problem or language L is a subset of
Σ∗.

For example, let Σ = {(, ), 0, 1} and let MATRIX
MULTIPLICATION be the set of strings (A,B,C ) for which each
of A,B,C is an n2-length list of binary strings, and AB = C when
these are interpreted as n × n matrices of binary integers.
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What should a model of computation be?

Fix a process that takes in an input string x ∈ Σ∗ and has
some output behavior.

Informally, we say that a process decides L if it has some
behavior for x ∈ L and a different behavior for x 6∈ L.

A model of computation is a way to specify what kind of
thing the computational process can be.
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A precise model of computation

Definition (Turing Machine)

A Turing machine T consists of. . .

A finite set of states Γ

An infinite tape for symbols to sit on

A “head” which points to some square on the tape.

A finite list of instructions, one for each element of Γ× Σ

(Photo from http://www.aturingmachine.com/)
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A precise model of computation, II

Definition (Turing Machine)

At time-step, the Turing machine reads its internal state and the
symbol at its current head, and does some of the following:

Change the state

Write a symbol to the current head spot

Move the head to a spot on the tape

Computation halts when the machine enters the accept state or
the reject state.
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Polynomial time

Definition

Decidability We say that a language L is decidable by Turing
machine T if

when T is run on x ∈ L, T halts and accepts, and

when T is run on x 6∈ L, T halts and rejects.

Let f : N→ N. We say that T decides L in time f if

T decides L.

When T is run on an input of length at most n, T halts
within f (n) steps.

Definition

P We say that L ∈ P or L is decidable in polynomial time if there is
some polynomial p and Turing machine T such that T decides L
in time p.
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P is robust

Our definition of Turing machine is arbitrary.

The class of polynomials is closed under multiplication and
composition.
So P is closed under subroutines and poly-length for-loops.
In particular, any two sufficiently powerful models of a computer
can simulate each other in polynomial time.
P would be the same if we replace our Turing machine with a
multi-tape Turing machine, a Python program, DNA-based
computation, etc.
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A problem in P

Example

MATRIXMULTIPLICATION is in P.

Proof.

The standard matrix multiplication algorithm for two n × n
matrices takes about n3 arithmetic operations. Implement this
algorithm in your favorite programming language. �
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Beyond P

P captures the notion of “solvable in a reasonable amount of time
on a normal computer”. For our purposes, we will consider
polytime computations as a “baseline” upon which everything else
rests.

In the rest of the talk, we’ll discuss different ways to
augment the power of polytime Turing machines by providing
additional resources.
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Randomness as a resource

Randomness is a useful resource!

Definition

We say L ∈ BPP if there is a deterministic polynomial time
algorithm M such that when r is chosen uniformly at random,

If x ∈ L, then M(x , r) accepts with probability at least 2
3 .

If x 6∈ L, then M(x , r) accepts with probability at most 1
3 .

It is believed that P = BPP, however, there are problems known to
be in BPP not currently known to be in P. Before 2002, primality
testing was such a problem.
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A problem for which randomness helps.

Definition

Polynomial Identity Testing PIT is the decision problem: given a
parenthesized expression describing a multivariate polynomial p
over a finite field F , is p identically zero?

By identically zero, we mean that all of the coefficients of the
monomials are 0. For example, let F be the field with two
elements. Then

x4 + y4 + (x + y)4 is identically 0,

while x3 + y3 + (x + y)3 = x2y + xy2 is not identically 0
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A randomized algorithm

Lemma (Schwartz-Zippel)

Let p = p(x1, x2, . . . , xn) be a polynomial of degree d over a field
F .

Let S be a finite subset of F (e.g. if F is finite, we can set
S = F). Choose r1, . . . , rn independently and uniformly from S.
Then

Pr
r1,...,rn

[p(r1, . . . , rn) = 0] ≤ d

|S |

If a nonzero polynomial has degree which is small compared to the
size of the field, then a random point is not a zero with high
probability.
This suggests a BPP algorithm for PIT: pick a random point and
evaluate the polynomial. If it’s a zero, declare that the polynomial
is zero. If not, declare that it’s not. (If the degree is not small
compared to the field, enlarge the field by moving to a field
extension.) Doing the same with a brute-force search would take
exponential time.
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One-way, one-round proof system

You want to solve a decision problem. You show the problem to
Merlin and he gives you a piece of advice.

You don’t trust him, so
you have to check it yourself.

Definition (NP)

A language L is in NP if there is a poly time algorithm V (the
verifier) such that

If x ∈ L, then there is some witness w such that M(x ,w)
accepts.

If x 6∈ L, then for any candidate witness w , M(x ,w) rejects.

Additionally, we require that the length of w is bounded by a
polynomial in the length of x .

We’ll refer to w variously as a witness, proof, or certificate.

Example

Graph 3-coloring and graph isomorphism are both in NP.
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Two-way, one-round proof system

You want to solve a decision problem. You start by generating a
question which you ask to Merlin. Merlin gives you an answer, and
then you use his answer to come to a decision.

Example (Graph non-isomorphism)

You have two graphs, G and H, which you suspect are isomorphic.
You want to prove this with Merlin’s help. You undertake the
following protocol:

Flip a coin to pick one of the graphs.

Randomly permute the graph you picked; hand it to Merlin.

Ask Merlin to tell you which graph you handed him.

If G 6∼= H, then Merlin can always distinguish.
If G ∼= H, then the situation is identical from Merlin’s point of
view, regardless of which graph you picked. He will be right with
probability exactly 1

2 .
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AM

Definition

We say a language is in AM if there is a randomized poly-time
algorithm A, a function M, and a verifier V such that when x is an
input of length at most n,

If x ∈ L, then V (x ,A(x),M(x ,A(x))) accepts with probability
at least 1− ε

If x ∈ L, then V (x ,A(x),M(x ,A(x))) accepts with probability
at most 1− η

We require that the gap between ε and η is at least 1/p(n) for
some polynomial p.

Fact

NP ⊆ AM.

NP and AM are not necessarily closed under complement.

Fact

Graph isomorphism is in NP ∩ coMA.
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PSPACE

Space is more valuable than time!

Definition

We say that a Turing machine T decides L in space s if T decides
L and whenever T is run on an input of length at most n, it
touches only s(n) squares on its tape. We say that a language L is
in PSPACE if there is a polynomial p and a Turing machine
deciding L in space p.

Theorem (PSPACE is big)

1 P ⊆ NP ⊆ PSPACE

2 P ⊆ coNP ⊆ PSPACE

3 P ⊆ BPP ⊆ PSPACE
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Proof that PSPACE is big, I

Idea: Polynomial space is big enough to do brute-force search.

Proof of NP ⊆ PSPACE.

Suppose that L ∈ NP. Let V be a verifier and let q be a
polynomial such that for x ∈ L of length at most n, there is a
witness w of length at most q(n).

We describe a PSPACE-algorithm deciding L.

1 Initialize w ← 0q(n).

2 Try V (x ,w). Note whether it accepts or rejects, and then
erase the memory used in the computation.

3 If V accepted, halt and accept.

4 If V rejected and w is at the largest possible value, halt and
reject.

5 Otherwise, increment w and return to step 2.

�
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Proof that PSPACE is big, II

Lemma

PSPACE is closed under complement.

This establishes that NP ⊆ PSPACE iff coNP ⊆ PSPACE.

Proof.

Given a PSPACE-algorithm for problem L, switch the accept and
reject states. This is a PSPACE-algorithm for L. �
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Proof that PSPACE is big, III

In our previous brute force search, we only cared about finding a
single point in the search space with a specified property.
PSPACE-computations can do much more than that, however.

Proof.

Proof that BPP ⊆ PSPACE Let L ∈ BPP with algorithm M such
that Prr [M(x , r)accepts] ≥ 2

3 for x ∈ L and
Prr [M(x , r)accepts] ≤ 1

3 for x 6∈ L. We give a PSPACE-algorithm
deciding M:

1 Initialize r to the all-zeroes string. Initialize counters “accept”
and “reject”.

2 Run M(x , r). If it accepts, increment the

3 If r is not the maximum value, increment r and return to step
2.

4 If the accept counter is larger, halt and accept. Otherwise,
halt and reject.

�

In fact, this shows that PP ⊆ PSPACE, where PP is the class of
problems solvable by randomized algorithms without the
requirement that there be a large separation between the accept
and reject probabilities.
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CTCs

In 1949, Kurt Gödel proved that the equations of general relativity
allow for the existence of closed timelike curves.

These are regions
of spacetime where you can travel in a spatial loop and end up
back at the beginning before you started.
How can we use these to do computation?

Jalex Stark Wizards vs. Time Machines



What is Complexity Theory?

Models of computation
Complexity classes
Interactive Proofs
Closed Timelike Curves

CTCs
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The grandfather paradox

Here is a “proof” that interaction with CTCs is impossible.

Travel along the CTC until you come out 50 years before you
enter.

Shoot your grandparent in the head, killing them.

Fail to be born.

Fail to step into the CTC.

Contradiction!
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The Markov chain model

Consider two states of the universe, corresponding to whether or
not you are alive.

Let each of these states be a basis element in a
two-dimensional vector space:(

1
0

)
is “you are alive” and

(
0
1

)
is “you are dead”. Consider

the “perform the shoot-my-grandparent experiment” operator
which interchanges these:(

0 1
1 0

)(
1
0

)
=

(
0
1

)
;

(
0 1
1 0

)(
0
1

)
=

(
1
0

)
.

The apparent contradiction arises because we want this experiment
to not change the state of the world.
This contradiction is easily resolved: set the state of the world as

1
2

(
1
1

)
!
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Stable distributions of Markov chains

Say that a finite-dimensional matrix A is a Markov chain if:

It takes probability distributions to probability distributions.

It is irreducible, i.e. it cannot be written in block diagonal
form with more than 1 block.

Theorem

If A is a Markov chain, then A has a unique +1-eigenvalue
eigenvector, called its stable distribution. Furthermore, it has the
following explicit form:

v = lim
n→∞

1

n

n∑
i=1

Aiv0, (1)

for any starting distribution v0.
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A BPPCTC algorithm for NP

Definition

A language L is in BPPCTC if it can be decided in polynomial time
by a randomized algorithm which can find stable distributions of
implicitly-defined Markov chains as a unit time operation.

Markov chains can encode brute force searches in much the same
way as PSPACE algorithms. Suppose we have L ∈ NP with verifier
V with an input of length n. Let there be one basis state |w〉 for
each possible witness w , along with one extra “accept basis state”
|accept〉.
Let A |w〉 = |w + 1〉 if V (x ,w) rejects and A |w〉 = |accept〉 if
V (x ,w) accepts. Let A |accept〉 = |accept〉.
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Wizards = Time Machines

QIP
[Jai+10]

= IP

[Sha92]
= PSPACE

[AW09]
= BPPCTC = BQPCTC (2)
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