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What makes self testing work?

Self-testing community has a bag of tricks that requires
intuition and hard work to apply.

Thesis: Self-testing proofs run on algebra representations.

We focus on the simplest possible new results with proofs
using a representation-theoretic framework.
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A pseudotelepathic self-testing result

Theorem ([Wu+16])

There is a two-prover nonlocal game with perfect completeness
self-testing the maximally entangled state on two pairs of qubits.
The self-test has O(ε) robustness, i.e. if the provers win with
probability 1− ε, then their state is O(ε) close in trace distance
to the ideal state.

This was the first self-test using a pseudotelepathy game, i.e. a
nonlocal game where ideal quantum provers win with probability 1
while any classical provers win with probability < 1.

Andrea Coladangelo, Jalex Stark Robust Self Testing for Linear Constraint Games



Motivation
Techniques

Open Questions

The magic square
A conventional self-testing proof

A pseudotelepathic self-testing result

Theorem ([Wu+16])

There is a two-prover nonlocal game with perfect completeness
self-testing the maximally entangled state on two pairs of qubits.
The self-test has O(ε) robustness, i.e. if the provers win with
probability 1− ε, then their state is O(ε) close in trace distance
to the ideal state.

This was the first self-test using a pseudotelepathy game, i.e. a
nonlocal game where ideal quantum provers win with probability 1
while any classical provers win with probability < 1.

Andrea Coladangelo, Jalex Stark Robust Self Testing for Linear Constraint Games



Motivation
Techniques

Open Questions

The magic square
A conventional self-testing proof

The Mermin–Peres Magic Square equations

e1 e2 e3

e4 e5 e6

e7 e8 e9

e1 + e2 + e3 = 0 (mod d)

e4 + e5 + e6 = 0 (mod d)

e7 + e8 + e9 = 0 (mod d)

−(e2 + e5 + e8) = 1 (mod d)

−(e1 + e4 + e7) = 0 (mod d)

−(e3 + e6 + e9) = 0 (mod d)

Add up all equations: 0 = 1.
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The Magic Square game

1 Verifier asks Alice for an
assignment to all the variables in a
particular equation. Verifier asks
Bob for an assignment to one
variable in the same equation.

2 Without communicating with each
other, Alice and Bob send answers
to Verifier.

3 Verifier checks that Alice’s
assignment satisfies the relevant
equation.

4 Verifier checks that Alice and Bob
agree on their shared variable.

Transcript (d = 3)

Verifier Alice, assign e1, e2, e3.
Bob, assign e2.

Alice e1 = 0, e2 = 1, e3 =
2.

Bob e2 = 1.

Verifier 0 + 1 + 2 = 0
(mod 3).

Verifier 1 = 1.
Alice and Bob win
the game.
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Classical players can’t overcome the contradiction

We could make a similar game starting from to any system of
linear equations (mod d). These are called linear constraint
system games (LCS games).

Fact

If a system of equations has no solution, and Alice and Bob use a
classical strategy in the corresponding LCS game, then they win
with probability < 1.

(In fact, they win with probability ≤ 1− 1
max(n,m) , where n,m are

the number of equations and variables, respectively.)
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The Mermin–Peres Magic Square operators, d = 2

I ⊗ Z Z† ⊗ Z† Z ⊗ I

X† ⊗ Z ZX ⊗XZ Z† ⊗X†

X ⊗ I X† ⊗X† I ⊗X

X 2 = Z 2 = I

XZX †Z † = −I

On any line, the three
operators commute

The product of operators on
a solid line is I

The product of operators on
the dashed line is −I

If we replace {0, 1} with {1,−1} and replace addition with
multiplication, then these operators satisfy the magic square
equations! Call this an “operator solution” for the equations.
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Winning the game with an operator solution, I

Suppose O1,O2,O3 are commuting binary observables with
〈ψ|O1O2O3|ψ〉 = (−1)a. If Alice measures O1,O2,O3 to get
results a1, a2, a3, then she always has a1 + a2 + a3 = a.

Similarly, suppose that OA and OB satisfy 〈ψ|OAO
†
B |ψ〉 = 1. If

Alice measures OA to get outcome a and Bob measures OB to get
outcome b, then a− b = 0 will always hold.
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Winning the game with an operator solution, II

When asked for the value of a variable in the magic square, Alice
measures the corresponding magic square operator. The
multiplicative relations guarantee that Alice always satisfies her
equations.

Similarly, Bob measures the conjugate of the magic square
operator. Since |ψ〉 is maximally entangled, this guarantees that
they give matching outputs.

Theorem ([CLS16])

For any linear constraint game, if Alice and Bob share a maximally
entangled state and make measurements according to an “operator
solution” of the equations, then they will win with probability 1.
Furthermore, this is the only way to always win an LCS game.
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Find an isometry

Suppose we want to prove a self-testing result for the maximally
entangled state of one pair of qubits, denote it |EPR2〉.

Let |ψ〉AB be the shared state used by Alice and Bob. We need to
find isometries WA and WB such that

WA ⊗WB |ψ〉AB = |EPR2〉A1B1
⊗ |aux〉A2B2

. (1)

How?
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Reducing state self-testing to operator self-testing, I

Characterize the maximally entangled state via operators. Notice
that |η〉 = |EPR2〉 is the unique solution (up to global phase) to
this set of equations:

〈η|X ⊗ X |η〉 = 1,

〈η|Z ⊗ Z |η〉 = 1.
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Reducing state self-testing to operator self-testing, II

Let W = WA ⊗WB . If we want to ensure
W |ψ〉 = |EPR2〉 ⊗ |aux〉, we can get that by ensuring

〈ψ|W †(XA1 ⊗ XB1 ⊗ IA2 ⊗ IB2)W |ψ〉 = 1,

〈ψ|W †(ZA1 ⊗ ZB1 ⊗ IA2 ⊗ IB2)W |ψ〉 = 1.

Now suppose we have operators X̃ and Z̃ such that
XA1 ⊗ IA2 = WAX̃AW

†
A and ZA1 ⊗ IA2 = WAZ̃AW

†
A, and similarly

for B.
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Reducing state self-testing to operator self-testing, III

XA1 ⊗ IA2 = WAX̃AW
†
A and ZA1 ⊗ IA2 = WAZ̃AW

†
A, and similarly

for B, so we can substitute in our equation

〈ψ|X̃A ⊗ X̃B |ψ〉 = 1,

〈ψ|Z̃A ⊗ Z̃B |ψ〉 = 1.

If we let X̃ and Z̃ be the player’s observables, then this equation
can be guaranteed by winning a game with probability 1!
To show self-testing, we show that some subset of the
player’s measurement operators are isometrically equivalent
to the Pauli group.
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Stability of the Pauli group

The algebraic relations of the Pauli operators determine the Pauli
operators up to isometry.

Lemma

Suppose X̃ and Z̃ are operators on Hilbert space H with
X̃ 2 = Z̃ 2 = I and X̃ Z̃ X̃ Z̃ = −I . Then there is some isometry
W : H → C2 ⊗Haux such that W X̃W † = X ⊗ I and
W Z̃W † = Z ⊗ I .

Proof.

Build W “with our bare hands”: find an explicit formula for W
using sums and products of SWAP operators and projections onto
the eigenspaces of X̃ , Z̃ . �
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Main self-testing results

Theorem

The magic square game (mod d) self-tests its ideal strategy (which
uses the maximally entangled state of local dimension d2 together
with the magic square of operators) with robustness O(d6ε).

Same for the magic pentagram, testing a state of dimension d3.

Theorem

For integer n and d, there is an LCS game with O(n2) variables
and equations self-testing its ideal strategy with robustness
O(d6n10ε). (The game is a product of squares and pentagrams.)
The strategy uses the maximally entangled state of local dimension
dn and observables which are n-qudit Paulis of weight at most 5.
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Proof sketch.

Show that a winning strategy for an LCS game is an
approximate operator solution to the system of equations.

Show that approximate operator solutions are approximate
representations of the game’s solution group Γ.

Show that every approximate representation of the solution
group Γ is close to an exact representation of Γ. (This
requires Γ to be finite.)

Compute the solution group Γ of the game in question.

Show that only one exact representation of Γ serves as a
winning strategy for the game.

�
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Defining the solution group

We want to study the class of all sets of nine operators obeying
the relations of the magic square. We forget the operators and
focus on the multiplicative relations.

The solution group Γ is given by

Γ = 〈S |Requation ∪ Rcommutation〉 , S = {e1, e2, . . . , e9}
Requation =

{
e1e2e3 = 1, . . . e3e6e9 = 1; ed1 = 1, . . . ed9 = 1

}
Rcommutation = {[e1, e2] = 1, [e1, e3] = 1, [e2, e3] = 1, . . .}

The elements of the group are finite strings of the letters ei and
their inverses e−1i . We allow to cancel words according to the
equations in R.
A representation of the solution group is a Hilbert space together
with an assignment to each letter an operator on that Hilbert
space. This is what we called an “operator solution” before.
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Approximate representations

We could assign to each letter an operator, but not have the
equations satisfied exactly. But if we satisfy them approximately,
as in

‖A1A2A3 − I‖ ≤ ε, (2)

this will still allow us to succeed in the game.
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A stability theorem for finite groups

Theorem ([GH15], [Vid17])

Let G be a finite group. Let ρ be a state on the Hilbert space
HA ⊗HB . Suppose that f : G → U(HA) be an “ε-approximate
representation with respect to ρ”, i.e.

Ex ,y∈G
∥∥(f (x)f (y)⊗ IB − f (xy)⊗ IB

)√
ρ
∥∥
2
≤ ε. (3)

Then there is an isometry V : HA → HA′ and an exact
representation τ : G → U(HA′) such that

Ex

∥∥∥(f (x)⊗ IB − V †τ(x)V ⊗ IB

)√
ρ
∥∥∥
2
≤ ε. (4)
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Stability theorem applied to one-qubit Paulis

Let G = {I ,X ,Z ,XZ ,−I ,−X ,−Z ,−XZ} be the one-qubit Weyl
group. Suppose we have a operators X̃ , Z̃ satisfying X̃ 2 ≈ε I ,
Z̃ 2 ≈ε I , and X̃ Z̃ X̃ Z̃ ≈ε −I .

Define f : G → U(Cd) starting with f (I ) = I , f (X ) = X̃ ,
f (Z ) = Z̃ .
Extend f to all of G in some fashion:

f (XZ ) = X̃ Z̃ f (−I ) = X̃ Z̃ X̃ Z̃

f (−X ) = (X̃ Z̃ X̃ Z̃ )X̃ f (−Z ) = (X̃ Z̃ X̃ Z̃ )Z̃

f (−XZ ) = (X̃ Z̃ X̃ Z̃ )X̃ Z̃

Check that all 64 equations of the form f (x)f (y) ≈η f (xy) hold
with η ≤ 16ε.
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Better self-testing results with finite group theory

Any finite solution group with well-understood representation
theory can be analyzed with these tools. Do any of them give
self-testing results with better robustness?

Conversely, can we use structure theorems about group
representations to give no-go theorems?

Question

Exhibit a family of LCS games self-testing high-dimensional
entanglement with constant completeness soundness gap,
(reproving results of Natarajan and Vidick) or

Show that no family of LCS games satisfies the games qPCP
conjecture.
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Structure of pseudotelepathy games

Any LCS game which is pseudotelepathy must use a maximally
entangled state for its winning strategies. [CM14] Are there
two-prover pseudotelepathy games using different states?

We give two-player pseudotelepathy games with minimum
dimension dn for d , n ≥ 2. [Cle+04] gives a two-player
pseudotelepathy game with minimum dimension 3.

Is there such a game for prime dimension p > 3?

How about dimension 6?

Can we use representation-theoretic ideas to get self-testing
for multi-prover games, e.g. with the LME construction of van
Raamsdonk?
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Algebraic self-testing outside of finite groups

[DCOT17] prove a stability theorem for (infinite) amenable
groups. Do any such groups correspond to self-testing linear
constraint games?

Applying the solution group construction to games which are
not linear constraint games yield solution algebras which are
not necessarily group algebras. E.g. [LMR17] construct
algebras related to graph isomorphism games. Can we
understand self-testing for these games by representations of
these algebras?
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