
P v NP

Jalex Stark

August 19, 2015

1 Ladner’s Theorem

As a complexity theorist, when you see a new problem, you have two goals: to
find the smallest complexity class it is in, and to find the largest complexity
class you believe it’s not in. Notice I said “is in” for the first statement but
“believe it is in” for the second. There’s a reason for that — upper bounds are
much easier to prove than lower bounds. If I want to show that a problem is
in EXPTIME, I can just write an exponential-time algorithm for it. If I want to
show something is in NP, I just write a polynomial-time verifier for it. Proving
that no fast algorithm exists is really hard.

Definition 1.1.

PRIMES = {x |x is a prime number }

Where does PRIMES fit in our hierarchy of complexity classes? Well, trial
division easily gets us PRIMES ∈ EXP. In fact, if we’re not picky about what
divisors we try, we get PRIMES ∈ PSPACE. How about PRIMES ∈ NP?
PRIMES ∈ coNP? In other words, do there exist short proofs of primality?
Of compositeness?

A short proof of compositeness is easy — just give a nontrivial divisor. A
short proof of primality requires a bit more cleverness. We’ll show one called
the Pratt certificate. It’s based on the following converse to Fermat’s Little
Theorem:

Fact 1.2. If there is an integer a such that:

• a is coprime to n,

• an−1 ∼= 1 (mod n), and

• for every prime q dividing n− 1, a(n−1)/q 6∼= 1 (mod n),

then n is a prime number.

So if if I want to quickly prove to you that n is prime, I’ll start by giving you
such an a. You can easily check the first two conditions (the first by claculating
the gcd and the second by repeated squaring), but the last condition requires
knowing the prime factorization of n − 1, which isn’t trivial. So a good short
proof should also supply this factorization. Then we’re done, right?

1

Jalex Stark August 19, 2015

Example 1.3. Here’s a Pratt certificate for 85: (a = 4, 85− 1 = 6 · 14). We can
quickly check that 4 is coprime to 85 and that 485−1 ∼= 1 (mod 85). We can also
check that 4(85−1)/6 ∼= 16 (mod 85) and 4(85−1)/14 ∼= 16 (mod 85). Therefore,
85 is prime!

Okay, so we also need a guarantee that our “prime factorization” is actually
made of primes. How do we do this? Provide Pratt certificates for those, too!
You might be worried that this recursion grows out of control. On the homework,
you’ll prove a precise bound on the number of sub-Pratt certificates appearing
in a Pratt certificate. For now, though: the length of a prime factorization is
basically polynomial in the length of the number. (The number of prime factors
of n with multiplicity is bounded by log2 n, since each prime is at least 2.)

So now we know PRIMES ∈ NP ∩ coNP. It is widely conjectured that P 6=
NP ∩ coNP — in other words, that there are problems in NP ∩ coNP outside of
P . Could PRIMES be such a problem? No.

Theorem 1.4 (Agrawal–Kayal–Saxena, 2002). PRIMES ∈ P

The proof is by explicit construction of an algorithm that runs in roughly1

O(n12) time, and was improved within a few years to roughly O(n6) time. This
algorithm is generally known as the “AKS primality test”, in case you want to
look it up.

Definition 1.5.

INTEGER FACTORIZATION = {(n,m) | ∃d < m[d | n]}

Clearly, INTEGER FACTORIZATION ∈ NP: a short proof is just an appropri-
ate factor. In fact, INTEGER FACTORIZATION ∈ coNP by an argument we’ve
already seen: a short disproof is just a prime factorization of n. (We don’t
need certificates of primality anymore — since PRIMES ∈ P, a prime is its own
certificate!)

Unlike PRIMES, INTEGER FACTORIZATION is not known to be in P. In fact,
it’s strongly suspected not to be — many in-practice cryptographic protocols
depend on the hardness of this problem. At this point in your complexity career,
you’re probably used to “hard” meaning something like “NP-complete”. There
are two good reasons we shouldn’t expect such a notion of hardness to apply
here:

• The class NP ∩ coNP probably2 doesn’t have complete problems.

• If a problem in coNP is NP-complete, then NP = coNP.

This gives us the following:

Proposition 1.6. If NP 6= coNP and P 6= NP ∩ coNP, then there are problems
in NP but not in P which are not NP-complete.

1By “roughly”, we mean “up to polylogarithmic factors”
2Ask me about “syntactic” and “semantic” classes if you want to know more.

2

Jalex Stark August 19, 2015

This makes life harder for those trying to show that a problem is easy or
hard, but it also makes the world more interesting!

Both of the hypotheses of Proposition 1.6 are generally regarded as true, but
it would be nicer if we had a weaker hypothesis that was easier to believe.

Theorem 1.7 (Ladner, 1975). If P 6= NP, then there is a language A ∈ NP \P
which is not NP-complete.

Proof idea Recall the proof that there exists B such that PB 6= NPB . In
that proof we started with this language:

L(B) = {x | ∃w ∈ B[|x| = |w|]}

and proved that no matter what B is, L(B) ∈ NPB . Then we diagonalized
B against the languages in P . That is, we picked B cleverly so that for each
A ∈ P , L(B) 6= A. Now we’ll do the same kind of thing. Let’s start with this
language:

Af = {x |x ∈ SAT and f(|x|) is even}

So as long as f is poly-time computable, this language is in NP. A nonde-
terministic polynomial time algorithm for Af is as follows: compute f(x). If
it’s odd, reject. Otherwise, accept iff x ∈ SAT.

Now our goal is to construct f cleverly to satisfy the following:

• Af 6∈ P

• Af is not NP-complete

Think of this as “blowing holes in SAT”. (The “holes” are the strings of
lengths n for which f(n) is even.) The language L has “half” of SAT — enough
of it that it can’t be in P , but not enough of it that we can reconstruct all of
SAT from it.

Unlike last time, we have two things to diagonalize against. Let’s restate
our conditions in a diagonalization-friendly form:

• For all L ∈ P, L 6= A

• For all poly-time computable functions f , f does not reduce SAT to A.

Also unlike last time, our diagonalization needs to be efficent. Last time we
set out to find an oracle, which is just a set of languages, so we defined it
by induction and threw all worries of efficiency to the wind. This time, our
diagonlization is going to be captured by the function f , so we need to be
careful about how we go about it.

3

Jalex Stark August 19, 2015

Set-up Let {Mi}i∈N be an effective enumeration of all of the algorithms. By
effective, we mean that there is a polynomial time function that, given i, pro-
duces the source code for algorithm Mi.

We’ll use a fun fact from computability theory: not only does this enumer-
ation exist, but every language that is decided by an algorithm in this enu-
meration is decided by infinitely many algorithms in this enumeration. More
precisely: for all i, there exists j > i such that ∀x[Mi(x)⇔Mj(x)].

Similarly, we can enumerate all of the functions as {Ri}i∈N. Now, let’s
rephrase our conditions on A in terms of the Mi and Ri.

First, A 6∈ P iff A is distinct from every language in P. So if we had an
enumeration of the polynomial time algorithms (call it {Pi}i∈N, we could say

A 6∈ P⇔ ∀i∃x[A(x) 6= Pi(x)]

Problem: we can enumerate all of the algorithms, but we can’t enumerate all
of the algorithms that halt in polynomial time. (Well, we might be able to, but
then our enumeration would take superpolynomial time to compute.)

Solution: we’ll put a polynomial clock on each of the Mi so that it runs for
no more than ni steps. Then our enumeration exactly captures the languages in
P : if L ∈ P , then L ∈ TIME(nk) for some k. Since each language is represented
infinitely often, there is some i > k so that L is decided by Mi. Mi is not
affected by the clock, so it decides L. Furthermore, every language decided by
a clocked machine is a language in P . Let’s do the same kind of clocking for
the functions.

A is not NP-complete iff there is no polytime reduction from SAT to A.
In other words, A is not NP-complete iff every polytime function fails to be a
reduction:

A is not NP-complete⇔ ∀i∃x[A(x) 6= SAT(Ri(x))]

The construction Forget for now about the definition Af . We’ll build A′ in
stages. We’ll systematically go through every string in the language and decide
whether each is in A′ or not.

At stage 2i, we’ll ensure that A′ is not equal to the language described by Mi.
To do this, just set A′(x) = SAT(x) and then check whether SAT(x) = Mi(x). If
so, stay in stage 2i and go to the next string. Otherwise, go to stage 2i+ 1 with
the next string-length, ie. the string 0|x|+1. Claim: stage 2i always terminates
after considering only finitely many strings.

Proof: Otherwise, we’d have a polytime decidable language that was dif-
ferent in only finitely many places from SAT. But that gives us a polytime
algorithm for SAT: memorize the finitely many differences, and apply the algo-
rithm for the polytime language to any string not among those. This contradicts
the assumption P 6= NP.

At stage 2i+ 1, we’ll ensure that Ri is not a reduction from SAT to A′. To
do this, set Ri(x) 6∈ A′ and then check whether x ∈ SAT. If so, move on to step
2i+2 with string 0n, where n is greater than |Ri(x)| for each x we considered in

4

Jalex Stark August 19, 2015

this stage. Otherwise, increment x and stay in step 2i+ 1. Claim: this always
terminates after considering only finitely many strings.

Proof: Otherwise, SAT is finite.
Now recall our definition from before

Af = {x |x ∈ SAT and f(|x|) is even}

We now have a clear choice for f : f(|x|) is the stage of the above construction
in which we consider strings of length |x|. Problem: is f polytime computable?
No! If we’re given x and want to compute f(x), we need to do the whole
construction up to x, which includes solving up to 2|x| instances of SAT!

Lazy diagonalization This problem is solvable: let’s just slow f down a lot.
Let’s slow f down enough that at each stage, we can see whether the previous
stages have finished.

First, set f(0) = f(1) = 2. For n ≥ 1, define f(n + 1) = f(n) if n ≤
(log n)f(n). Otherwise, if n is big enough, we interpret f(n) as the current stage
of our construction. We can think of n as a comptuation clock: the bigger n is,
the more time we have to check that stage f(n) has been completed.

• If f(n) = 2i, check whether there is some x with |x| < log n such that
x 6∈Mi but x ∈ A. If there is, then we can say we’ve completed stage 2i,
so we set f(n+ 1) = f(n) + 1. Otherwise, set f(n+ 1) = f(n).

• If f(n) = 2i+ 1, check whether there is some x with |x| < log n such that
x ∈ SAT and Ri(x) 6∈ A.

We’re asking to compute whether strings are in A, but A is defined in terms of
f — isn’t this circular? It’s not circular if the strings we’re asking about are of
a length for which we’ve already computed f . Notice that |Ri(x)| ≤ |x|i, since
Ri runs for only ni many steps. By construction of f , we have

|x|i ≤ (log n)i ≤ (log n)f(n) < n,

so f(|x|) is always already defined when we ask for it. You should also be
worried that we’re asking about SAT instances. But we know SAT ∈ EXP, and
the length of these SAT instances is logarithmic in the length of the input, so
we can compute these in polynomial time.

5

Jalex Stark August 19, 2015

2 Exercises

Exercise 2.1. The Pratt certificate for 229 (a = 6, 229−1 = 22 ·3·19) has 4 sub-
Pratt certificates: one for itself, one for 3, one for 19, and one for 3 appearing
in the certificate for 19.

Prove that a Pratt certficate for a prime p has at most 4 log2 p − 4 Pratt
certificates for primes other than 2. (Hint: strong induction.)

Exercise 2.2. We usually think of the problem of integer factorization as the
function problem “given n, compute its prime factorization.” Prove that our
definition of integer factorization as a language (decision problem) captures all
the hardness of that problem. More precisely, prove that:

• Given oracle access to the function problem, the decision problem can be
solved in polynomial time. (Hint: You only need one oracle call)

• Given oracle access to the decision problem, the function problem can
be solved in polynomial time. (Hint: Binary search! You only need
O(log2(n)) oracle queries.)

The terminology we’re using isn’t very precise. Come talk to me if you don’t
understand what this problem means.

Exercise 2.3 (Actually, this is a hint for exercise 2.4). Let L be a language
in NP. Recall that there is a nondeterministic polynomial time machine M
such that for each x ∈ L, there is some sequence of nondeterministic choices on
which M accepts x, and that for each x 6∈ L, M rejects x on every sequence of
nondeterministic choices.

Consider the machine M ′ obtained by flipping the result of M on each com-
putation path — that is, M ′ rejects every pair of (input, sequence of nondeter-
ministic guesses) on which M accepts and vice versa. What is the relationship
between the language decided by M and the language decided by M ′?

Exercise 2.4. Define a “strong” nondeterministic algorithm as follows: on each
pair of (input, sequence of nondeterministic guesses) it does one of {accept,
reject, return ‘?’}. Say that a strong nondeterministic algorithm M accepts
x if on every sequence of nondeterministic guesses, it accepts or returns ‘?’.
Similarly, say M rejects x if on every sequence of nondeterministic guesses, it
rejects or returns ‘?’.

Prove that the class of problems decided by polynomial time strong nonde-
terministic algorithms is exactly NP ∩ coNP.

6

Jalex Stark August 19, 2015

3 Mahaney’s Theorem

Definition 3.1. A language L is sparse if c(n) = |{x ∈ L | |x| ≤ n}|, the number
of strings in the language of length at most n, is bounded above by a polynomial.

We can think of a sparse language as having very little expressive power.

Theorem 3.2 (Mahaney, 1982). If a sparse language is NP-complete, then
P = NP.

This is a hard proof, so we’ll introduce the ideas in several steps. We’ll start
with the following puzzle.

Consider a full binary where some nodes are labeled with a dot and some
nodes are labelled with arrows. Only leaves may be labelled with dots, and it
is possible that no leaf has a dot. A node has an arrow pointing a child node iff
that node has an arrow or a dot. (A node may have 0 or 1 or 2 arrows.)

Problem 3.1 (Easy). You want to decide whether the tree has any dot-marked
leaves in it. You have a marker which starts at the root of the tree. One
computational step consists of looking at the label of the node you are currently
at, and then choosing to move to one of the child nodes or the parent node.
You can remember as much information as you like. Design a deterministic
algorithm which halts in a number of steps polynomial in the depth of the tree
that either produces a marked node or decides that none exist.

Okay, that was silly.

Problem 3.2 (For real this time). Take the same set up as before, but now
each node has a color which obscures the arrows. (You can still tell whether
a marked leaf is marked.) Each node with an arrow has a different color from
any node without an arrow. Design a deterministic algorithm which halts in a
number of steps polynomial in the depth of the tree and the number of colors
that either produces a marked node or decides that none exist.

Solution: Do a depth-first search of the tree. (That is, From each node, first
recursively search th eleft subtree, then recursively search the right subtree.) At
each node, note the color. If you’ve seen a color more than depth-of-tree many
times, ignore that node.

Proof of correctness. When the depth-first search finds an x-leaf, it does so
along the leftmost branch of arrows. Therefore, the algorithm never sees more
than depth-many arrow nodes. Any color seen at least that many times may
safely be assumed to not be an arrow-node color. We never have to search a
subtree whose root is a non-arrow node, since we know such a subtree contains
no x-leaves. Since we see each non-arrow color at most depth-many times and
we see at most depth-many arrow colors, our algorithm is polynomial in the
number of colors and the depth of the tree. �

Definition 3.3. A language L is unary if L ⊆ 1∗ = {1n |n ∈ N}.

7

Jalex Stark August 19, 2015

Theorem 3.4 (Berman, 1978). If a unary language is NP-complete, then P =
NP.

Proof. Let φ be an instance of SAT. We aim to give a polynomial time algorithm
to decide whether φ is satsfiable. We’ll build an object known as the self-
reduction tree of φ and then apply Problem 3.2.

Start with a full binary tree of depth n, where φ has n arguments. Label the
root with φ (x1, x2, . . . , xn). Label the left child of the root φ(0, x2, . . . , xn) and
the right child with φ(1, x2, . . . , xn). In general, the children of a node should
be labeled with the formula of the parent node with one variable substituted by
a constant. The leaf nodes of this tree should be constant Boolean expressions.
Furthermore, they are all of the possible assignments to φ — φ is satisfiable iff
any of the leaf nodes are labeled with a true formula.

Let R be a reduction from SAT to our unary language L. At each node,
apply R. If the result is 1n, interpret this node as being colored by the nth

color. If the result is not unary, then we know the formula at the ndoe is not
satisfiable, so interpret this as a bad color. At a leaf, evaluate the formula. If
it’s true, treat it as a marked node. Otherwise, treat it as an unmarked node.

We’ve exactly recreated the situation from problem 3.2, so the same algo-
rithm will find a satisfying assignment or prove none exist. �

This can be strengthened:

Definition 3.5. If L is a language, cL(n) = # {x ∈ L | |x| ≤ n}. L is sparse if
there is a polynomial p such that ∀n[cL(n) ≤ p(n)].

Theorem 3.6 (Mahaney, 1982). If S is sparse and coNP-complete, then P =
NP.

We’ll give a sketch of the proof before we dive in:

1. Pad S, preserving NP-completeness and sparseness.

2. Construct an auxiliary language Ŝ ∈ NP which is sort of like the comple-
ment of S.

3. By the NP-completeness of S, obtain reductions from Ŝ to S and SAT to
S.

4. “Compose” these reductions in various ways to get many “candidate re-
ductions”.

5. Run the candidate reductions in parallel to get a real reduction from SAT
to S.

6. Apply Lemma 3.7.

Lemma 3.7 (Fortune, 1979). If S is sparse and coNP-complete, then P = NP.

8

Jalex Stark August 19, 2015

Proof. Let R be a reduction from SAT to S. We’ll give a polytime algorithm
for SAT in the same way as Theorem 3.4 — we’ll traverse a self-reduction tree,
using R to provide colors. Every node that is not an arrow node is labeled with
a formula that is an instance of SAT, so all of the colors of nonarrow nodes lie
in S. Since S is sparse, there are only polynomially many non-arrow colors, so
the marked-node finding algorithm works. �

Proof of Mahaney’s Theorem. Claim: If p is any polynomial function and Sp

is a padding of S by p, then Sp is sparse and NP-complete.
Proof: Define Sp =

{
x#k

∣∣x ∈ S and
∣∣x#k

∣∣ ≤ p(|x|)}. The identity func-
tion is a reduction from S to Sp, so Sp is NP-hard. “Drop all of the #” is a
reduction from Sp to S, so Sp ∈ NP. Finally, cSp

(n) ≤ ncS(n), so Sp is sparse.
Later in the proof, we’re going to define a polynomial p and assume that

S was actually Sp all along. Along the way, we’ll only use the sparseness and
NP-completeness of S, so this is a valid technique.

Claim: Ŝ defined below is in NP

Ŝ =
{

(x, 1k)
∣∣ k < cS(|x|) or (k = cS(|x|) and x 6∈ S)

}
Proof: We’ll describe an NP algorithm that decides the complement of S

under the assumption that k = cS(|x|), and then it will accidentally decide
exactly Ŝ.

Algorithm: First, nondeterministically guess k distinct strings of length
at most |x|, rejecting if any of them lie outside of S. Then accept if none of
them are x. Analysis: If k < cS(|x|), then some branch successfully guessed k
strings which are in S but not equal to x. Therefore, the algorithm accepts. If
k = cS(|x|), then the branches which haven’t rejected after the first stage have
guessed exactly the strings in S. Then it accepts iff x 6∈ S. If k > cS(|x|), then
no branch can guess k distinct strings in S, so the algorithm rejects.

Candidate reductions: S is NP-complete, so let U be a reduction from Ŝ
to S and let T be a reduction from SAT to S. Let p be such that |T (φ)| ≤ p(|φ|).
Now replace S with the padded Sp, and modify T to pad its output such that
|T (φ)| = p(|φ|).

Define Rk(φ) = U(T (φ), k). Rk acts like a reduction from UNSAT to S,
but only on inputs of length φ. That is, if k = cS(|φ|), then Rk(φ) ∈ S ⇔ φ ∈
UNSAT.

A poly-time algorithm for SAT: Let q(n) be a polynomial bound for
cS(p(n)). That is, let q be large enough so that after we hit our formulas with
T , q is a bound on how many formulas we have of at most a given length.

Let φ be a formula. For each k ≤ q(|φ|), run the algorithm from the proof
of the lemma using Rk as the reduction. All but one of these (the one with
k = cS(|T (φ)|)) are not the true reduction, instead outputting useless garbage.
However, if any of them find a satisfying assignment, then it’s actually a satis-
fying assignment, so φ is actually satisfiable. If none of them find a satisfying
assignment, then in particular, the true reduction didn’t find a satisfying as-
signment, so φ is not satisfiable.

9

Jalex Stark August 19, 2015

Therefore, this algorithm decides SAT in polynomial time. We conclude
P = NP. �

10

	Ladner's Theorem
	Exercises
	Mahaney's Theorem

