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1 Paradoxes of Infinity

Galileo’s Dialogues concerning two new sciences (1638) discusses f(n) = n

2
as

a bijection between a set and a proper subset.

Dedekind’s Essays on the Theory of Numbers, Continuity of Irrational Num-

bers, the Nature and Meaning of Numbers (1888) proves the following:

Theorem 1.1 (Dedekind). A set is infinite i↵ it can be put into bijection with

a proper subset of itself.

Theorem 1.2. If X is an infinite set, there is a partition X = X1 tX2 so that

X is in bijection with both X1 and X2.

Definition 1.3. If A,B ✓ Rn
, then we say A

⇠
=

B or A is congruent to B i↵

there is some distance-preserving function ' : Rn ! Rn
such that '(A) = B.

Example 1.4. N ⇠
=

N+
via n 7! n + 1. Notice that both of these sets are

unbounded.

Example 1.5. In two dimensions, we can do this with bounded sets. Consider

complex numbers as R2
. Let |c| = 1, c = e

i✓
with ✓ not a rational multiple of

⇡. Then if A = {cn : n 2 N}, B = {cn : n 2 N+}, we have B = cA so that

B

⇠
=

A.

Remark 1.6. If A ✓ R is bounded and B ✓ A is congruent to A, then B = A.

Proof. Any distance-preserving function on R is of the form '(x) = ±x+ a for

some a 2 R. In the positive case, notice that the least upper bound of A is

distinct from the least upper bound of '(A), so that they must be di↵erent. In

the negative case, notice that '

2
(x) = x. Then '(A) = B ✓ A. '(B) ✓ '(A)

since B ✓ A. So A = '(B) ✓ '(A) = B. In other words, A ✓ B, so A = B. ⇤

Definition 1.7. A,B ✓ Rn
. We sayA,B are equidecomposable ifA =

Fk
i=1 Ai, B =Fk

i=1 Bi and Ai
⇠
=

Bi for all i  k. We write A ⇠ B.

Remark 1.8. [0, 1] ⇠ (0, 1]
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Proof. Let {x} = x � bxc be the positive fractional part of x. Let ↵ 2 (0, 1)

be irrational. Let A = {{n↵} : n 2 N} and B = {{n↵} : n 2 N+}, so that

A = B [ {0}. We will show A ⇠ B.

A1 = A \ [0, 1� ↵), A2 = A \ (1� ↵, 1). Notice that if 1� ↵ 2 A, then ↵ is

rational, so 1� ↵ 62 A.

B1 = B\[↵, 1), B2 = B\(0,↵). We have B1 = A1+↵ and B2 = A2+(1�↵).

Now we put A3 = B3 = [0, 1] \ A = (0, 1] \ B. Since [0, 1] = A1 t A2 t A3

and (0, 1] = B1 tB2 tB3, we’re done. ⇤
Example 1.9 (Mazurkiewicz–Sierpinski). There is a countable A ✓ R2

and a

partition A = A1 tA2 such that A

⇠
=

A1
⇠
=

A2.

Theorem 1.10. No bounded set can have the above property.

Definition 1.11. A ✓ R2
is called paradoxical is there exists a partition A =

A1 tA2 such that A ⇠ A1 ⇠ A2.

Theorem 1.12 (Banach (1923)). No “reasonable” subset of R2
is paradoxical.

For example, bounded sets with nonempty interior are not paradoxical.

There is a finitely additive isometry-invariant extension of Lebesgue measure

defined on all subsets of R2
. That is, there is a function µ : P(R2

) ! [0,1]

such that µ(A) = �(A), (where � is the Lebesgue measure) and µ(A [ B) =

µ(A) + µ(B) if A \ B = ; and µ('(A)) = µ(A). Then if A ⇠ B, µ(A) = µ(B).

Then if A is paradoxical, µ(A) = 2µ(A) 2 {0,1}.

Theorem 1.13 (Sierpinsky (1946)). There are no nonempty paradoxical sets

in R1
.

Theorem 1.14 (Banach–Tarski Paradox (1924)). Any solid ball in R3
is para-

doxical. Equivalently, any two bounded sets in R3
with non-empty interior are

equidecomposable.

Theorem 1.15 (Tarski Circle Squaring Problem (Laczkovich)). A square and

a circle of equal area in the plane are equidecomposable.

Theorem 1.16 (Marczeaski Problem (Dougherty–Foreman)). Banach–Tarski

can be done with pieces that have the property of Baire.

Theorem 1.17 (Trevor Wilson). Banach–Tarski can be done “physically”: with

pieces moving continuously and staying disjoint.

2 Isometries in Euclidean Space

Definition 2.1. A map ' : Rn ! Rn
is an isometry if |'(x)� '(y)| = |x� y|

for all x, y 2 Rn
. Recall A,B are congruent if there is an isometry ' so that

'(A) = B.

Example 2.2. '(x) = x+ a, a 2 Rn
is an isometry.
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Example 2.3. Rotation in R2
around the origin by ✓ is a linear isometry. The

matrix with repsect to the standard basis is

✓
cos ✓ � sin ✓

sin ✓ cos ✓

◆

Proposition 2.4. If L : Rn ! Rn
is an isometry with L(0) = 0, then L is

linear.

Proof. First, see that x · y = L(x) · L(y). This follows from the polarization

identity x · y =

1
2

⇣
|x|2 + |y|2 � |x� y|2

⌘
. So we have

L(x) · L(y) = 1

2

⇣
|L(x)� 0|2 + |L(y)� 0|2 � |L(x)� L(y)|2

⌘

L(x) · L(y) = 1

2

⇣
|L(x)� L(0)|2 + |L(y)� L(0)|2 � |L(x)� L(y)|2

⌘

L(x) · L(y) = 1

2

⇣
|x� 0|2 + |y � 0|2 � |x� y|2

⌘

L(x) · L(y) = x · y

Since L preserves dot products, it takes an orthnormal basis to an orthonormal

basis, so it is linear.

⇤
Definition 2.5.

• An orthogonal transformation is a linear isometry.

• An n⇥ n matrix is orthogonal if AA

T
= In. In other words, A

T
= A

�1
.

We’ve already shown that for any isometry ', '(0) = 0 i↵ ' is an orthogonal

transformation.

Theorem 2.6. L : Rn ! Rn
is orthogonal i↵ its matrix (in the standard basis)

is orthogonal.

Proof. Let L be an orthogonal transformation and A its matrix. Given x, y 2
Rn

, compute x

T
y = x · y = L(x) ·L(y) = (Ax)

T
(Ay) = x

T
A

t
Ay. Then x

T
(In �

A

T
A)y = 0, therefore A

T
A = AA

T
= In.

Now assume A is orthogonal. Then L(x) · L(y) = (Ax)

T
(Ay) = x

T
A

T
Ay =

x

T
y = x · y. ⇤

Proposition 2.7. Every isometry of Rn
is a composition of a linear isometry

and a translation. In other words, if ' is any isometry, there is an orthogonal

transformation L and a constant c 2 Rn
so that '(x) = L(x) + c. Moreover, L

and c are unique.

Proof. Let '(0) = c. Then L(x) = '(x)� c is orthogonal and '(x) = L(x) + c.

c is uniquely determined from ' and L is uniquely determined from L and c. ⇤
Corollary 2.8. ' is onto.
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3 Isometries in Euclidean Space (continued)

Let G
n

be the group of all isometries of Rn

and O
n

(the orthogonal group) be

the group of all linear isometries.

If A 2 O
n

, then detAAT

= det I
n

, so detA = ±1.

Definition 3.1. SO
n

= {A 2 O
n

: detA = 1} is the subgroup of direct or

orientation-preserving orthogonal transformations. If detA = �1, we say A is

indirect or or orientation-reversing. It’s clear that SO
n

/ O
n

and O
n

/SO
n

⇠
=

Z/2Z.
Let T

n

⇠
=

hRn,+i be the group of translations. Let � be the homomorphism

L+ a 7! L that sends a transformation to its linear part. Then T
n

= ker� and

O
n

= im�, so G
n

/T
n

⇠
=

O
n

.

We say ' is direct or indirect is �' is direct or indirect, respectively.

Proposition 3.2. Every direct isometry of R1
is of the form '(x) = x + a.

Every indirect isometry is of the form '(x) = �x+ a.

Proof. The only 1⇥ 1 orthogonal matrices are (1) and (�1). ⇤
Theorem 3.3. Every direct isometry of R2

is a translation or rotation around

a point.

Every indirect isometry of R2
is a glide reflection, ie. a reflection about a

line followed by a translation along the line.

Proposition 3.4. Let A be an orthogonal 2⇥ 2 matrix.

• If A is direct, then there is some ✓ 2 [0, 2⇡) so that A =

✓
cos ✓ � sin ✓
sin ✓ cos ✓

◆
.

A corresponds to rotation by ✓. As a result, SO2
⇠
=

S1
, the circle group.

• If A is indirect, then there is some ✓ 2 [0, 2⇡) so that A =

✓
cos ✓ sin ✓
sin ✓ � cos ✓

◆
.

A corresponds to reflection about the line through 0 and (cos

✓

2 , sin
✓

2 ).

1
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Proof. For orthogonal A =

✓
a b
c d

◆
, we have a2+c2 = 1 = b2+d2, ab+cd = 0.

So a = cos', c = sin' and b = sin , d = cos . ab + cd = sin' cos +

sin cos' = sin(' +  ) = 0. Therefore, ' +  = k⇡ and detA = ad � bc =

cos(k⇡) = ±1.

Case 1 k is even. cos' = cos and sin' = � sin , soA =

✓
cos ✓ � sin ✓
sin ✓ cos ✓

◆
.

A is clearly a rotation by ✓.

Case 2 k is odd. cos = � cos' and sin = sin', soA =

✓
cos ✓ sin ✓
sin ✓ � cos ✓

◆
.

Let ~p = (cos

✓

2 , sin
✓

2 ), ~q = (� sin

✓

2 , cos
✓

2 ). Notice ~q ? ~p.

~pA = (cos ✓ cos
✓

2

+ sin ✓ sin
✓

2

, sin ✓ cos
✓

2

� cos ✓ sin
✓

2

) = ~p

Similarly, ~qA = �~q. Therefore, A is a reflection about the line

✓

2 . ⇤

Proof of Theorem 3.3. '(x) = L(x) +~a. We’ll split into the direct and indirect

cases.

Case 1 L is direct, so L = R
✓

, rotation about the origin by ✓. Let’s assume

that ✓ 6= 0, |~a| 6= 0. Find the fixed point x0 of ' as follows: Consider the

perpendicular to a and two lines

✓

2 away from it. If x is on the clockwise-side

line, then L(x) = x� t~a for some real t. At the origin, the distance between x
and L(x) is 0, and it gets arbitrarily large as we get arbitrarily far away. By

the Intermediate Value Theorem, there’s some x0 where L(x0) = x0�~a, so that

'(x0) = x0.

Then ' is rotation about x0 by the angle ✓. If ✓ = 0, ~a 6= 0, ' is a translation.

If ✓ = |~a| = 0, ' is the identity.

Case 2 L is indirect. Let ⌧ be the line of reflection of L. Let ~a?
⌧

and ~a⌧

be the components of ~a perpendicular and parallel to ⌧ , respectively. A simple

geometric argument shows that reflecting across ⌧ and then translating by ~a?
⌧

is

the same as reflecting about the

1
2~a

?
⌧

translate of ⌧ . Then ' is a glide reflection.

⇤

Definition 3.5 (Isometries in R3
). A glide-rotation is a rotation about an axis

folllowed by translation in the direction of that axis.

A reflection-rotation is a reflection about a plane followed by rotation around

the axis orthogonal to the plane.

A glide-reflection is a reflection about a plane followed by translation along

the axis orthogonal to the plane.

Theorem 3.6.

2
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• Every direct isometry in R3
is a glide-rotation.

• Every indirect isometry in R3
is a reflection-rotation or glide-reflection.

Proposition 3.7. Every direct orthogonal transformation in R3
is a rotation

around an axis through 0.

Proof. Let A be its matrix. We will show that there is nonzero ~x so that A~x = ~x.

det(I3 �A) = det(I3 �A) det(AT

)

= det(AT � I3)

= det((AT � I3)
T

)

= det(A� I3)

= (�1)

3
det(I3 �A)

Therefore, det(I3 � A) = 0, so (I3 � A)~x = 0 (equivalently ~x = A~x) for some

nonzero x.
Let

~i = ~x

k~xk . Let (
~i,~j,~k) be a right-handed orthonormal basis. Let L be the

linear part of A. The matrix of L with repsect to this basis is

0

@
1 0 0

0 a b
0 c d

1

A
,

with detL = det

✓
a b
c d

◆
= 1. (This is determined by L~i =

~i and the or-

thogonality of L) Therefore, L is a rotation about the axis determined by

~i.
⇤

Proposition 3.8. If L is an indirect linear isometry in R3
, then L is a reflection

followed by a rotation through an axis going through 0 and perpendicular to this

plane.

Proof. By the same argument as before, find a unit vector

~i such that L~i = �~i
and compute that the matrix with respect to an orthnormal basis including

~i

as an axis is

0

@
�1 0 0

0 a b
0 c d

1

A
. ⇤

Proof of Theorem 3.6. '(x) = L(x) +~a. We’ll split into the direct and indirect

cases.

Case 1 L is direct, so it is rotation about the line � by an angle ✓. As in

the proof of Theorem 3.3, decompose ~a into ~a?
�

and ~a
�

. We can decompose '
into two parts: x 7! L(x) + ~a?

�

and x 7! x + ~a
�

. If we restrict to the plane

perpendicular to � at the origin, Theorem 3.3 tells us that our first part is just

a rotation about some �0 k �. Therefore, ' is a glide-rotation. (Notice that if

✓ = 0, ' is just a translation)

3
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Case 2 L is indirect, so L is a reflection about the plane ⇧ followed by a

rotation about � (orthogonal to ⇧) of angle ✓. If ⇧0
is a translate of ⇧ by

1
2~a�

and �0
is as in Case 1, then ' is a reflection about ⇧

0
and a rotation about �0

.

If ✓ = 0, then ' is a reflection about ⇧

0
and a translation by ~a?

�

. ⇤
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4 Isometries in Euclidean Space (continued)

Definition 4.1. An isometry ' : R3 ! R3 is performed continuously if there
is t 7! '

t

2 G3, t 2 [0, 1] such that for each x 2 R3, '
t

(x) is continuous with
'0 = id and '1 = '.

Fact 4.2. ' is performed continuously i↵ ' is direct.

Problem 4.3. L is a direct linear isometry on R3
with matrix A. Then L is

a rotation around an axis through

~0. Call the angle of rotation ✓. Show that

1 + 2 cos ✓ = trA.

Problem 4.4. Let A =

0

@
0 1 0
0 0 1
1 0 0

1

A
.

Show that A is orthogonal with detA = 1, so corresponds to a rotation around

an axis through

~0 in the direction of the unit vector ~⌘. Calculate ~⌘ and the angle

of rotation.

5 Measures

Definition 5.1. If X is a set, P(X) = {A : A ✓ X} is the power set of X.
If X ✓ A, then X \A = A

C is the complement of A.

Definition 5.2. A ✓ P(X) is an algebra if ; 2 A and if A,B 2 A, then
A

C

, A [B 2 A.
A is a �-algebra if it also satisfies 8n[A

n

2 A] )
S

n2N A

n

2 A.

Example 5.3. A = all finite or co-finite sets is an algebra but not a �-algebra.

Example 5.4. S = all countable of co-countable sets is a �-algebra.

If C ✓ P(x), there is a smallest algebra containing C and also a smallest �-
algebra containing C. This is because an intersection of a family of (�-)algebras
is a (�-)algebra.

1
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Example 5.5. The countable-cocountable �-algebra is the smallest �-algebra
that contains all singletons.

Definition 5.6. A finitely additive measure on an algebra A ✓ P(X) is a map
µ : A ! [0,1] such that µ(;) = 0 and µ(A [ B) = µ(A) + µ(B) if A \ B = ;.
Here a+1 = 1 for any a 2 [0,1].

Consequences of the basic definition:

• A ✓ B ) µ(A)  µ(B). This is because µ(B) = µ(A) + µ(B \A).

• If {A
i

}
in

is a pairwise disjoint family, then µ(
S

n

i

A

i

) =
P

n

i

µ(A
i

) by
induction.

• µ(
S

n

i

A

i

) 
P

n

i

µ(A
i

). To see this, let A0
i

= A

i

\
S

k<i

A

k

. Then A

0
i

✓ A

i

and
S

n

i

A

i

=
S

n

i

A

0
i

with the A

0
i

pairwise disjoint.

Example 5.7. On A = P(X), the counting measure is given by

µ(A) =

(
|A| , if |A| < 1
1, otherwise

Example 5.8. On A the finite-cofinite algebra, the following is a finitely additive
measure

µ(A) =

(
0, if |A| < 1
1, otherwise

Definition 5.9. A countably additive measure or just measure is a finitely
additive measure that also has µ(

S
n2N A

n

) =
P

n2N µ(A
n

) for A
n

a countable
disjoint family of sets.

Example 5.10. Fix x0 2 X. Let

�

x0(A) =

(
0, if x0 62 A

1, if x0 2 A

This is the Dirac measure on x0

Example 5.11. S is a �-algebra of countable-cocountable sets.

µ(A) =

(
0, if A is countable

1, if A is cocountable

Example 5.12. Every measure on P(N) is fully determined by its values on the
singletons. In other words, every measure on P(N) can be represtented by a
countable sequence from [0,1].

Remark 5.13. There are finitely additive measures µ on P(N) so that µ({n}) = 0
and µ(N) = 1.

2
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Problem 5.14. Let µ : S ! [0,1] be a measure. Show the following:

• A0 ✓ A1 ✓ . . . ) µ(
S

n

A

n

) = lim
n

µ(A
n

)

• A0 ◆ A1 ◆ . . . ) µ(
T

n

A

n

) = lim
n

µ(A
n

) if there is at least one A

i

so

that µ(A
i

) < 1.

• µ(
S

n

A

n

) 
P

n

µ(A
n

)

Definition 5.15. A standard n-box in Rn is any set of the form
Q

n

i=1(ai, bi).
An n-box is a set '(B) for ' an isometry and B a standard n-box.

Definition 5.16. B(Rn) is the smallest �-algebra containing the n-boxes. The
sets in B(Rn) are called Borel sets.

Every open set is Borel, as is every closed set. The collection of Borel sets is
equinumerous with the reals.

Theorem 5.17 (Lebesgue). There is a unique measure m

n

: B(Rn) ! [0,1]
with the following two properties:

• m

n

assigns to each n-box its volume. That is, m

n

('(
Q

n

i

(a
i

, b

i

))) =
Q

n

i

(b
i

�
a

i

).

• m

n

is translation invariant.

m

n

, in general, is called Lebesgue measure. If n = 1, 2, 3, we sometimes call
it length, area, volume, repsectively.

Definition 5.18. A set A ✓ Rn is called null if there is some B ◆ A such that
B 2 B(Rn),m

n

(B) = 0.

Example 5.19.

• Any countable set is null.

• A k-dimensional subspace of Rn for k < n is null.

Example 5.20. Let E0 = [0, 1], E1 = [0, 1
3 ] [ [ 23 , 1], . . . so that E =

T
n2N E

n

is the Cantor set. Since E

n

is closed for all n, E is closed. Furthermore,
E0 ◆ E1 ◆ · · · , so m

n

(E) = lim
n

m

n

(E
n

) = 0. Then every subset of the
Cantor set is null. Since the Cantor set has cardinality of the reals, it has more
subsets than there are Borel sets. Therefore, some subset of the Cantor set is a
non-Borel null set.

Definition 5.21. A subset A ✓ Rn is Lebesgue measurable (LM) if A = B [N

with B Borel and N null. LM(Rn) is the collection of LM sets in Rn.

Proposition 5.22. A set A ✓ Rn

is LM i↵ there exist Borel sets B1, B2 such

that B1 ✓ A ✓ B2 and m

n

(B2 \B1) = 0

3
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Proof. Assume A is LM. Then A = B [N . There is a Borel N 0 so that N ✓ N

0

and N

0 is null. Then let B1 = B and B2 = B [N

0.
Assume B1 ✓ A ✓ B2 with B1, B2 Borel and B2 \B1 null. Let N = A \B1.

Then N is null and A = B1 [N . ⇤

It follows that LM(Rn) is a �-algebra containing B(Rn). Define now m

n

:
LM(Rn) ! [0,1] by m

n

(B [N) = m

n

(B) if N is null.
We have to check that this is well-defined. If A = B [ N = B

0 [ N

0, then
B

0 \B ✓ N and B \B0 ✓ N

0, so m

n

(B) = m

n

(B \B

0) = m

n

(B0).
We usually write m

n

for m
n

.
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6 Lebesgue Measure

Proposition 6.1. For any B 2 B(Rn
),' 2 Gn, we have '(B) 2 B(Rn

) and if

M 2 LM(Rn
) then '(M) 2 LM(Rn

) with mn('(M)) = mn(M).

Proof. Fix an isometry '. Consider A = {B 2 B(Rn
) : '(B) 2 B(Rn

)}. Notice

that A is a �-algebra since ' preserves complements and unions. Moreover, A
contains all n-balls, so B(Rn

) ✓ A. A ✓ B(Rn
) by definition, so A = B(Rn

).

Next we prove mn('(B)) = mn(B). Define a measure m : B(Rn
) ! [0,1]

by m(B) = mn('(B)). We’ll show that m is translation-invariant and assigns

the appropriate volume to n-boxes. Then by the uniqueness of the Lebesgue

measure, m = mn, so that mn('(B)) = mn(B).

Since an n-box is an isometric image of a standard n-box, '(B) is an n-box

i↵ B is. Therefore m assigns the appropriate measure to n-boxes.

Let '(~x) = L(~x) + ~c. Then for any ~a 2 Rn
,

m(B + ~a) = mn('(B + ~a))

= mn(L(B + ~a) + ~c)

= mn(L(B) + L(~a) + ~c)

= mn(L(B) + ~c)

= mn('(B))

m(B + ~a) = m(B)

Therefore m is translation-invariant.

Finally, let M 2 LM(Rn
), so that M = B [ N with B Borel and N null.

Let C ◆ N with C Borel and mn(C) = 0. Then '(M) = '(B) [ '(N).

'(N) ✓ '(C), so '(N) is null. Therefore, '(M) 2 LM(Rn
). Furthermore,

mn('(M)) = mn('(B)) = mn(B) = mn(M). ⇤

Proposition 6.2. Let L : Rn ! Rn
be an invertible linear transformation, so

that if A is the matrix of L, detA 6= 0. Then if B 2 B(Rn
), L(B) 2 B(Rn

) and

mn(L(B)) = |detA|mn(B).

1
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Proof. Let S = {B 2 B(Rn
) : L(B) 2 B(Rn

)}. Then S is a �-algebra and if B

is an n-box, then L(B) is open, so every n-box is in S. Thus S = B(Rn
). Let’s

define a new measure m(B) =

mn(L(B))
|detA| . By linear algebra, m agrees with the

Lebesgue measure on the n-boxes.

m(B + ~a) =

mn(L(B + ~a))

|detA| =

mn(L(B) + L(~a))

|detA| =

mn(L(B))

|detA| = m(B)

Therefore, m is the Lebesgue measure. ⇤

Theorem 6.3 (Vitali). There exist sets which are not Lebesgue-measurable.

Proof. Define an equivalence relation on [0, 1] by x ⇠ y , x � y 2 Q. This

partitions [0, 1] into countable equivalence classes. Let V ✓ [0, 1] be a set

consisting of exactly one representative from each equivalence class. Assume

V is Lebesgue measurable. Then m1(V ) = m1(V + q). By definition of V ,

(V + q) \ (V + r) = ; for any distinct q, r 2 Q. Now let A =

S
q2Q\[�1,1].

By countable additivity, m(A) =

P
q2Q\[�1,1] m(V + q). Then m(A) = 0 if

m(V ) = 0 and m(A) = 1 if m(V ) > 0. But [0, 1] ✓ A ✓ [�1, 2]; contradiction.

⇤

Theorem 6.4. There is a finitely additive measure (f.a.m.) extending the

Lebesgue measure that is defined on all of P(Rn
).

Definition 6.5. Given a set X, a ring on X is a subset R ✓ P(X) such that

• ; 2 R

• A,B 2 R ) A [B 2 R

• A,B 2 R ) A \B 2 R

Notice that the third condition is weaker than being closed under complements,

so that every algebra is a ring.

Example 6.6. If X is infinite, then the set of all finite subsets of X is a ring but

not an algebra.

Theorem 6.7 (The f.a.m. Extension Theorem). Let R be a ring on X and

R ✓ A with A an algebra. Then for any given f.a.m. µR on R there is a f.a.m.

µA on A such that µA(R) = µR(R) if R 2 R.

Corollary 6.8. There exists a f.a.m. µ : P(N) ! [0, 1] such that µ({n}) = 0

but µ(N) = 1.

Proof. Let R be the finite-cofinite ring on N. Define

µR(A) =

(
0, if |A| < 1
1, if |A| = 1

and apply Theorem 6.7. ⇤

2
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Definition 6.9. Let C ✓ P(X). Call A an atom of C if A 6= ; and C 3 B ✓
A ) B 2 {;, A}.

If C is finite, define N(C) to be the number of atoms in C.

It is an easy fact that if C is finite, then for any A 2 C, A 6= ;, there is an

atom A

0 ✓ A, A

0 2 C.

Proof of Theorem 6.7, finite case. Assume A is finite. We’ll induct on N(A).

If N(A) = 1, then A = {;, X} and the result is trivial. Now let N(A) = n. If

R = {;}, then let µA be any measure with µA(;) = 0, say the counting measure.

So assume R contains a nonempty set. Then R has an atom R0. Let

A0 ✓ R0 with A0 an atom of A. Let X

0
= X \R0. Let A0

= {A 2 A : A ✓ X

0}
and R0

= {A 2 R : A ✓ X

0}. A0
is an algebra in X

0
and R0 ✓ A0

is a ring in

X

0
with N(A0

) < n. By inductive hypothesis, we have a µA0
extending µR�R0

.

Let A⇤
= {A 2 A : A ✓ R0} and R⇤

= {A 2 R : A ✓ R0} = {;, R0}. De-

fine a measure

µA⇤
(A) =

(
0, if A \A0 = ;
µR(R0), if A ◆ A0

Notice that since A0 is an atom, it must be that A \ A0 2 {0, A0}. This is a

f.a.m. on A⇤
extending µR�R⇤

.

Finally, define µA(A) = µA0
(A \ R0) + µA⇤

(A \ R0). Then µA is a f.a.m.

extending µR. ⇤

Definition 6.10 (Propositional Logic). Fix an indexed set {pi}i2I of elements

called propositional variables. Also fix the set of propositional connectives and

parentheses {¬,_,^,),,, (, )}. A formula is a string of symbols. The class

of formulas is the smallest class that contains the propositional variables and is

closed under finite application of propositional connectives. That is, the pi are

formulas and if ', are formulas, then ¬', (' ^  ), (' _  ), (' )  ), (' ,  )

are formulas.

A valuation v : {pi : i 2 I} ! {0, 1} assigns truth values to variables and

can be extended to assign truth values to formulas in the obvious way.
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7 The Compactness Theorem

Definition 7.1. Let {pi}i2I be an indexed family of propositional variables. A
formula is a string in the symbols {pi}i2I [ {¬,_,^,),,, (, )} defined recur-
sively by:

• Each pi is a formula

• If � and  are formulas, then (� ^  ), (� )  ),¬�, (� _  ), (� ,  ) are
formulas.

Definition 7.2. A valuation is a function v : {pi}i2I ! {0, 1}. We extend a
valuation to a function on all formulas as follows:

• v(¬�) = 1� v(�)

• v(� ^  ) = v(�) · v( )

• v(� _  ) = v(¬(¬� ^ ¬ ))

• v(�)  ) = v(¬� _  )

• v(�,  ) = v((�)  ) ^ ( ) �))

Definition 7.3. If � is a set of formulas and v is a valuation, we say v satisfies

� if v(�) = 1 for all � 2 �. We say that � is satisfiable if some valuation
satisfies it.

Example 7.4. �1 = {pi, pj ) pk}, �2 = {¬pi ^ (pj ) pk), pj , pk}, v(x) = 1
for all x. �1 is satisfied by v but �2 is not.

Theorem 7.5 (The Compactness Theorem). Let � be any set of formulas, then

� is satisfiable i↵ every finite subset of � is satisfiable.

Definition 7.6. A partial order on a set P is a binary relation that is reflexive,
antisymmetric, and transitive. We call (P,) a poset. If we have m 2 P so that
m  x ) x = m, we call m maximal. We call C ✓ P a chain if  �C is a linear
order.

1



Peter Burton Ma191 Geometrical Paradoxes Jan 20 2015

The following is equivalent to the Axiom of Choice:

Fact 7.7 (Zorn’s Lemma). If P is a nonempty poset such that every chain has

an upper bound, then P contains a maximal element.

Definition 7.8. A partial valuation is a valuation defined on any subset of the
propositional variables.

Definition 7.9. If f, g are functions we say f extends g or f ◆ g if dom (g) ✓
dom (f) and f(x) = g(x) for all x 2 dom (g).

Proof of 7.5. If v satisfies � and �0 ✓ �, then v satisfies �0. In particular,
every finite subset of a satisfiable family is satisfiable.

Now assume that every finite subset of � is satisfiable. Let V be the set of
all partial valuations such that for any valuation v 2 V and finite �0 ✓ � there
is a valuation v0 ◆ v satisfying �0. Order V by extension.

Let C be a chain in V . Clearly, u =
S

C is an upper bound for C if u 2 V .
Fix a finite �0 ✓ �. There are only finitely many variables in �0, so

P = {pi 2 dom (u) : pi appears in � 2 �0}

is finite. Then there is w 2 V so that P ✓ dom (w). Since w 2 V , there is
v0 ✓ w satisfying �0. Define

v(pi) =

(
u(pi), if pi 2 dom (u)

v0(pi), if pi 62 dom (u)

v is a valuation extending u and satisfying �0, so u 2 V .
By Zorn, let m be a maximal element of V . It su�ces to check that m is

defined on every propositional variable. Assume toward a contradiction that
q 62 dom (m). Extend m to m

0 by m

0(q) = 0 if for every finite �0 ✓ � there is
a valuation m0 ✓ m satisfying � so m0(q) = 0 and m0(q) = 0 and m

0(q) = 1
otherwise.

Suppose m

0(q) = 0. Then m

0 2 V , contradicting maximality of m.
Suppose m0(q) = 1. Then there is a finite �1 ✓ � so for any v ✓ m satisfying

�1, we have v(q) = 1. Fix an arbitrary �0 ✓ �. There is a valuation ⌫ ◆ m

satisfiying �0[�1 and ⌫(q) = 1 = m

0(q) so ⌫ ◆ m

0 and ⌫ satisfies �0. Therefore,
m

0 2 V ; contradiction. ⇤
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8 The Extension Theorem

Recall the statement of the extension theorem. We proved the finite case in the
Jan 15 lecture.

Theorem 8.1. Let R be a ring on X and A ◆ R an algebra. For any f.a.m.

on R, we can extend it to a f.a.m. on A.

Let R be a finite ring of sets, µR a f.a.m. on R. Let A be an algebra
extending R. For each A 2 A and each r 2 R, introduce a propositional
variable p

A,r

. We’ll think of p

A,r

as true i↵ µA(A) � r. Let � contain all
formulas of the form:

1. p

A,0 for all A 2 A.

2. pR,r

if R 2 R and µR(R) � r

3. ¬pR,r

if R 2 R and µR(R) < r

4. (p
A,q

) p

A,r

) for all A 2 A, q � r 2 R.

5. (p
A,r

) p

B,r

) for all A,B 2 A, A ✓ B

6. ((p
A,q

^ p

B,r

) ) p

A[B,q+r

) for all A,B 2 A, A \B = ;

7. (¬p
A,q

^ ¬p
B,r

) ) ¬p
A[B,q+r

for all A,B 2 A, A \B = ;

By Compactness, there is a valuation v satisfying �. Define µA(A) =
sup {r : v(p

A,r

) = 1} 2 [0,1].

Fact 8.2. If R 2 R, then µA(R) = µR(R)

Proof. If r  µR(R), then r  µA(R) by definition and (2). If r > µR(R), then
µA(R)  r by (3) and (4), so µA(R) = µR(R). ⇤

Fact 8.3. µA(A [B) = µA(A) + µA(B) if A \B = ;.

1
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Proof. If µA(A) = 1 or µA(B) = 1, then µ(A [ B) = 1 by (5). Then
assume µA(A) = q, µA(B) = r. Then v(p

A,q�"

) = v(p
B,r�"

) = 1. By (6),
µA(A [ B) � q + r � 2". Similarly by (7), µA(A [ B)  q + r + 2". Since this
holds for arbitrary ", µA(A [B) = q + r. ⇤

9 Integration on Finitely Additive Measures

Let X be any set and µ : P(X) ! [0,1] a f.a.m. Fix A ✓ X with µ(A) < 1.

Definition 9.1. A map s : A ! R is a step function if s =
P

n

k=1 ck�Ak where
A =

F
n

k=1 Ak

, c
k

2 R, and �

Ak is the characteristic function of A
k

.
Define Z

A

sdµ =

Z

A

s(x)dµ(x) =

nX

k=1

c

k

µ(A
k

)

Example 9.2. Let µ be the counting measure. Then

Z

A

sdµ =

nX

k=1

c

k

µ(A
k

) =
X

x2A

s(x)

Fact 9.3. If s =
P

m

j=1 cj�Aj , t =
P

n

k=1 ck�Bk and ↵,� 2 R, then ↵s+ �t is a

step function and

Z

A

(↵s+ �t)dµ = ↵

Z

A

sdµ+ �

Z

A

tdµ

Proof. {A
j

\B

k

} is a partition of A and ↵s+�t is constant with value ↵c
j

+�d

k

on A

j

\B

k

so ↵s+ �t is a step function. Then

Z

A

(↵s+ �t)dµ =

mX

j=1

nX

k=1

(↵c
j

+ �d

k

)µ(A
j

\B

k

) = ↵

Z

A

sdµ+ �

Z

A

tdµ

The last step follows from
P

n

k=1 µ(Aj

\ B

k

) = µ(A
j

) and
P

m

j=1 µ(Aj

\ B

k

) =
µ(B

k

). ⇤

Definition 9.4. If f : A ! R is bounded, ie. 9m9M8x[m  f(x)  M ], define
the sup-norm

kfk1 = sup
x2A

|f(x)| < 1

A sequence of bounded functions (f
n

)
n2N converges uniformly to f if kf � f

n

k1 !
0 as n ! 1.

Example 9.5. A = [0, 1]. f(x) = 0, f

n

(x) = 1
n

sin(nx). Clearly, f

n

! f

uniformly. Let g
n

(x) = nx

n(1� x). Then g

n

(x) ! 0 for all x, but it is not true
that g

n

! f uniformly.

Theorem 9.6. Suppose f : A ! R bounded. Then there is a sequence f

n

: A !
R of bounded functions such that f

n

! f uniformly and f

n

is a step function.

2
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Proof. We can assume WLOG f � 0. Otherwise, f is bounded so m  f and
we can consider a shift f � m. Let 0  f < M with M 2 N. We’ll show
that for each n, there is a step function f

n

so that kf � f

n

k1 <

1
n

. For each

0  k  Mn � 1, let I
k

= [ k
n

,

k+1
n

). Let A
k

= f

�1(I
k

). Then the A

k

partition
A, so we can define

f

n

=

Mn�1X

k=1

k

n

�

Ak .

Then clearly, |f
n

(x)� f(x)| < 1
n

if x 2 A

k

. Since this holds for all k, we have
kf

n

� fk1  1
n

. ⇤

Definition 9.7. Let f : A ! R be bounded. Let f
n

! f uniformly with f

n

a
step function. Then Z

A

fdµ = lim
n!1

Z

A

f

n

dµ

Proposition 9.8. The limit in the above definition exists.

Proof. x

n

=
R
A

f

n

dµ. We’ll show that (x
n

)
n2N is Cauchy.

x

m

� x

n

=

Z

A

f

m

dµ�
Z

A

f

n

dµ =

Z

A

(f
m

� f

n

)dµ

We have a bound |f
m

� f

n

|  kf
m

� f

n

k1. Applying this bound to every
piece of the partition, we have

|x
m

� x

n

|  kf
m

� f

n

k1 µ(A)  (kf
m

� fk1 + kf
n

� fk1)µ(A)

The last expression clearly goes to 0 as n ! 1. ⇤

Proposition 9.9. The limit in the above definition is independent of the choice

of f

n

.

Proof. Suppose f

n

! f , g
n

! f uniformly with f

n

, g
n

step functions. Just as
before,

����
Z

A

f

n

dµ�
Z

A

g

n

dµ

���� 
����
Z

A

(f
n

� g

n

)dµ

����
����
Z

A

f

n

dµ�
Z

A

g

n

dµ

����  kf
n

� g

n

k1 µ(A)

����
Z

A

f

n

dµ�
Z

A

g

n

dµ

����  (kf � g

n

k1 + kf
n

� fk1)µ(A)

Where the last expression goes to 0. ⇤
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10 Banach Limits

Definition 10.1. A Banach limit L is a function from bounded sequences of

real numbers to R ({xn} 7! L({xn}) 2 R) with the following properties:

1. 8n[xn � 0] ) L({xn}) � 0

2. L({↵xn + �yn}) = ↵L({xn}) + �L({yn})

3. L({xn}) = L({xn+1})

4. If 8n[xn = 1], L({xn}) = 1.

Fact 10.2. If L is a Banach limit, then

limnxn  L({xn})  limnxn.

In particular, if {xn} converges, then L({xn}) = limn xn.

Proof. Recall limnxn = infk sup {xn+k}. By 3,

L({xn}) = L({xn+k}).

Now let Mk = sup {xn+k} so that xn+k  Mk. By 1,

L({Mk � xn+k}) � 0.

Then by 2,

MkL({1})� L({xn+k}) � 0

So by 4,

Mk � L({xn+k}) = L({xn}).

Therefore, L({xn})  limnxn. The other inequality follows from the same tech-

nique. ⇤

Fact 10.3. There exists a Banach limit.

1
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Proof. Let µ : P(N) ! [0, 1] be a fam such that µ({n}) = 0, µ(N) = 1. Given

a bounded {xn}, consider f : N ! R given by f(n) =

1
n

Pn�1
k=0 xk. Then let

L({xn}) =
R
N fdµ. We’ll check the Banach limit axioms:

1. If xn � 0, f � 0, so L({xn}) =
R
N fdµ � 0.

2. Linearity of L follows from linearity of integrals.

4. L({1}) =
R
N 1dµ = µ(N) = 1

3. Fix {xn} with |xn|  M .

I = L({xn})� L({xn+1})

I =

Z

N

 
1

n

n�1X

k=0

xk � 1

n

nX

k=1

xk

!

I =

Z

N

x0 � xn

n
dµ

|I| =
����
Z

N

x0 � xn

n
dµ

����

|I| =
����
Z

n2N :nk

x0 � xn

n
dµ+

Z

n2N :n>k

x0 � xn

n
dµ

����

|I| 
����
Z

n2N :nk

x0 � xn

n
dµ

����+
����
Z

n2N :n>k

x0 � xn

n
dµ

����

|I|  0 +

2M

k + 1

µ({n 2 N : n > k})

|I|  2M

k + 1

|I| = 0

Therefore, L({xn}) = L({xn+1}).

⇤

11 Group Actions and Equidecomposability

Definition 11.1. Let G be a group and X a set. An action of G on X is a

map (g, x) 7! g · x 2 X such that 1 · x = x and g · (h · x) = gh · x.

Example 11.2. If H is a group and G is a subgroup, then all of the following

are actions of G on H:

• g · x = x

• g · x = gx

2
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• g · x = xg�1

• g · x = gxg�1

Example 11.3. Suppose G is a permutation group on X. Then g · x = g(x) is a
an action.

Example 11.4. G = (Z,+) and � : X ! X a bijection. Then n · x = �n
(x) is

an action.

Definition 11.5. Let G act on X. Define an equivalence relation on X by

xEy , 9g(g · x = y). The equivalence classes of this relation are the orbits

of the action. We say the orbit of x is [x]E = G · x = {g · x : g 2 G}. G acts

transitively on X if for all x, G · x = X.

X/E is usually written X/G and is called the orbit space of the action.

Example 11.6. Gn acting on Rn
by evaluation is transitive.

Example 11.7. If G  H, with the action g · x = gx then the orbit of x is the

right coset Gx.

Example 11.8. Let ↵ be irrational. Z acts on T by n · z = ei⇡n↵z. The orbit of

z is the countable set

�
ei⇡n↵z : n 2 N

 
.

Example 11.9. Let Q act on R by left-translation. Then the orbit space is the

same as the one discussed in the creation of the Vitali set.

Definition 11.10. If G acts on X and A,B ✓ X, we say A and B are G-

congruent (A ⇡G B) if 9g 2 G[g ·A = B].

Example 11.11. Gn-congruence on Rn
is exactly usual geometric congruence.

Definition 11.12. A,B are G-equidecomposable (A ⇠G B) if A =

Fn
k Ak,

B =

Fn
k Bk, and Ak ⇡G Bk.

Example 11.13. For Gn acting on R we just say equidecomposable and write

A ⇠ B.

Proposition 11.14. ⇠G is an equivalence relation.

Proof. Reflexivity and symmetry are trivial.

Assume A ⇠G B and B ⇠G C by Ai
gi�! Bi and Bj

hj�! Cj . We can

refine the partitions {Bi} and {Bj} as {Bi \Bj}. This gives rise to partitions

A =

�
g�1
i (Bi \Bj)

 
and C = {hj(Bi \Bj)}. Then the transitivity of ⇠G

follows from the transitivity of ⇡G. ⇤

Example 11.15. [0, 1] 6⇡ (0, 1] but [0, 1] ⇠ (0, 1] as we showed earlier in the class.

Example 11.16. The parallelogram with width w and height h is equidecompos-

able with a rectangle of width w and height h. See the diagram below.
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Region 1 includes the interior and boundary of the trapezoid minus the circle

inside. Region 2 includes only the interior of the triangle. Regions 3, 4, and

5 are intervals on the boundary of the triangle. Region 4 has no endpoints.

Regions 3 and 5 each have one endpoint, denoted by the hard bracket. Region 6

(not fully drawn) is a countable union of radii (each including the point on the

boundary of the circle but not at the center) generated by an irrational rotation.

Region 7 is the circle inside the trapezoid minus regions 5 and 6.

It is obvious how to move all regions but 6 from the left figure to the right

figure via rigid motions. Region 6 is rotated forward by one unit in order to

vacate the space of the first radius. Region 5 then occupies that space.

Definition 11.17. Let G act on X with A,B ✓ X. We say A �G B if

A ⇠G B0 ✓ B.

Theorem 11.18. A �G B and B �G A i↵ A ⇠G B.

The proof is a modification of a proof of the Cantor–Schroeder–Bernstein

theorem, which is a similar statement for set-theoretic injections and bijections.
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12 The Banach–Cantor–Schroeder–Bernstein The-

orem

Theorem 12.1. A �
G

B and B �
G

A i↵ A ⇠
G

B.

Proof. If A ⇠
G

B, then there is a bijection f : A ! B such that A

0 ⇠
G

f(A0)
for any A

0 ✓ A. Additionally, if A
1

⇠
G

B

1

and A

2

⇠
G

B

2

with A

1

\ A

2

= ; =
B

1

\B

2

, then A

1

[A

2

⇠
G

B

1

[B

2

.
Now let A ⇠

G

B

1

by f and B ⇠
G

A

1

by g. Inductively define C

0

= A \ A
1

and C

n+1

= gf(C
n

). We have C

n

✓ A and C

i

\ C

j

= ; for i 6= j. Let
C =

S
n

C

n

✓ A. Now A \ C ✓ A

1

. Performing a calculation,

g

�1(A \ C) = g

�1(A \
[

n

C

n

)

g

�1(A \ C) = g

�1(A) \
[

n

g

�1(C
n

)

g

�1(A \ C) = g

�1(A) \ (; [ f(C
0

) [ f(C
1

) [ · · · )
g

�1(A \ C) = g

�1(A) \ f(C)

g

�1(A \ C) = B \ f(C)

Then we have C ⇠
G

f(C) and A \ C ⇠
g

B \ f(C). Therefore, A ⇠
G

B. ⇤

Definition 12.2. A similarity in Rn is a bijection S : Rn ! Rn such that for
some ↵ > 0, |S(x)� S(y)| = ↵ |x� y| for any x, y 2 Rn. Similarities form a
group with isometries as a subgroup. We say A and B are similar if there is
some similarity S with S(A) = B.

Fact 12.3. If A,B ✓ Rn

have non-empty interior and A,B are bounded, then

we can decompose A = A

1

tA

2

, B = B

1

tB

2

such that A

1

is similar to B

1

and

A

2

is similar to B

2

.

1
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Proof. A shrinking map ↵(x � x

0

) + x

0

with 0 < ↵ < 1 and x

0

2 Rn is a a
similarity. Isometries are similarities. By composing a shrinking map and a
translation, we can find a similarity S with S(B) ✓ A and likewise a similarity
T with T (A) ✓ B. (Consider that A is contained in a ball of radius M and B

contains a ball of radius m; let 0 < ↵ <

m

M

) By theorem 12.1, we’re done. ⇤

13 Geometric Dissection of Polygons

Definition 13.1. Two polygons are congruent by dissection if P =
S

n

i=1

P

i

, Q =S
n

i=1

Q

i

such that

• P

i

, Q

i

are polygons

• P

i

⇡ Q

i

• P

i

, P

j

are disjoint ignoring boundaries if i 6= j

• Q

i

, Q

j

are disjoint ignoring boundaries if i 6= j

Theorem 13.2 (Bolyai–Gerwien). Polygons in R2

are congruent by dissection

i↵ they have the same area.

Proof. Obviously, if two polygons are congruent by dissection, they have the
same area.

For the other direction, it su�ces to show that every polygon is congruent
by dissection to a square of the same area.

Triangle Case Assume the polygon is a triangle. Then it is congruent by
dissection to a rectangle of the same area. Proof by picture:

Now take a rectangle of width w and height h; we’ll show it’s congruent by
dissection to a square with sidelength s =

p
wh. We can assume h < w < 4h

(If not, cut the rectangle in half and rearrange the halves to get a rectangle of

2
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width w

2

and height 2h.) This guarantees that point N lies on segment LJ in
the following diagram.

General Case Decompose the polygon into triangles. This is congruent by
dissection to a disjoint union of squares. It su�ces to show that the disjoint
union of two squares is congruent by dissection to a square. Let the squares
have sidelengths a, b and c =

p
a

2 + b

2.

⇤

Theorem 13.3. Two polygons are congruent by dissection (have the same area)

i↵ they are equidecomposable.

We’ll show now that congruence by dissection implies equidecomposability.
Later, we’ll show that equidecomposability implies equality of area.

3
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Definition 13.4. Let A ✓ Rn. The interior of A is

A

o =
[

G✓A

G open

G.

The closure of A is

A =
\

F◆A

F closed

F.

The boundary of A is �A = A \Ao.

Lemma 13.5. Suppose A ✓ R2

is bounded and has nonempty interior. Let T

be a finite union of finite line segments and points such that A \ T = ;. Then

A ⇠ A [ T .

Proof. Let D ✓ A be closed disk with radius r > 0. Write T =
F

n

i=1

S

i

where
each S

i

is a point, open interval, or half-open interval of length less than r. Use
the “shift trick” as in the last lecture to show that D [ S

1

� D. (generate a
countable union of line segments via an irrational rotation, then shift if by one
rotation to make room for an extra) Obviously D � D [ S

1

, so by 12.1 and
induction, A [ T ⇠ A. ⇤

Proof of 13.3. Suppose that P,Q ✓ R2 are polygons congruent by dissection,
P =

S
n

i=1

P

i

, Q =
S

n

i=1

Q

i

with P

i

⇡ Q

i

, P o

i

\ P

o

j

= ; = Q

o

i

\ Q

o

j

for i 6= j.

Then P

o

i

⇡ Q

o

i

and
S

n

i=1

P

o

i

⇠
S
Q

o

i

. Apply the lemma to A =
S

n

i=1

P

o

i

and
T = P \

S
n

i=1

P

o

i

. Do similarly for Q. Then

P ⇠
n[

i=1

P

o

i

⇠
n[

i=1

Q

o

i

⇠ Q

⇤

Definition 13.6. Let G act on X. A ✓ X is G-paradoxical if there are B,C ✓
A, B\C = ; and B ⇠

G

A ⇠
G

C. We call X just paradoxical if it is paradoxical
with respect to the group of isometries in Rn. We call G paradoxical if the set
G is paradoxical under the action of left-translation by G.

Example 13.7. Let F
2

be the free group on 2 generators, say a and b. We’ll
show F

2

is paradoxical. For x 2 F
2

, define S(x) to be the set of all reduced
words starting with x. Now F

2

= {1} t S(a) t S(a�1) t S(b) t S(b�1). Words
in S(a�1) do not have a as their second letter, so aS(a�1) = F

2

\ S(a). Then
S(a) t S(a�1) ⇠F2 F

2

. We can do the same with b, so F
2

is paradoxical.

In the above decomposition, 1 was not in either of our pieces. Let’s do a
di↵erent decomposition.

A

1

= S(a), A

2

= S(a�1), A

3

= S(b) [ {b�n : n 2 N}, A

4

= S(b�1) \
{b�n : n 2 Z+}. Then we have A

1

t aA

2

= F
2

= A

3

t bA

4

.
This is a concrete example of a result we’ll show in generality later: if X is

paradoxical, then we can have X = A tB with A ⇠
G

X ⇠
G

B.

4
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14 Properties of Paradoxical Sets

Proposition 14.1.

1. If A is G-paradoxical and A ⇠
G

A

0
, then A

0
is G-paradoxical.

2. A set A ✓ X is G-paradoxical i↵ there are B,C ✓ A with B \ C = ;,
B [ C = A such that A ⇠

G

B ⇠
G

C.

Proof. (2) The reverse direction is obvious. For the forward direction, let B,C ✓
A such that A ⇠

G

B ⇠
G

C with B \C = ;. Then A �
G

A \B and A \B � A.
So A ⇠

G

A \B = B

0 and A ⇠
G

= C

0. Then A ⇠
G

B

0 ⇠
G

C

0 with A = B

0 t C

0.
⇤

Definition 14.2. Let G act on X and µ : P(X) ! [0,1] be a fam. Then µ is
G-invariant if for any A ✓ X and any g 2 G, µ(g ·A) = µ(A).

If µ is G-invariant and A,B ✓ X are such that A ⇠
G

B, then µ(A) = µ(B).

Proposition 14.3. If µ : P(X) ! [0,1] is G-invariant and A ✓ X is such

that 0 < µ(A) < 1, then A is not G-paradoxical.

Proof. Assume not and let A = B t C with A ⇠
G

B ⇠
G

C. Then µ(A) =
µ(B) = µ(C) and µ(A) = µ(B) + µ(C), so µ(A) = 2µ(A). ⇤

A result due to Tarski gives a converse:

Theorem 14.4 (Tarski). Let G act on X. Then for any A ✓ X, the following

are equivalent:

• A is not G-paradoxical

• There is a G-invariant fam µ : P(X) ! [0,1] with µ(A) = 1.

Definition 14.5. Let G act on X and A ✓ X, f : A ! R. Define f
g

: g�1 ·A !
R by f

g

(x) = f(g · x).

1
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Theorem 14.6. Let G act on X. Let µ : P(X) ! [0,1] be a G-invariant fam.

Let f : A ! R be bounded, g 2 G. Then

Z

g

�1·A
f

g

dµ =

Z

A

fdµ.

Proof. First, consider characteristic functions f = �

B

. Then f

g

= �

g

�1·B , so
Z

g

�1·A
f

g

dµ =

Z

g

�1·A
�

g

�1·Bdµ = µ(g�1 ·B) = µ(B) =

Z

A

fdµ

By linearity, the theorem holds for all step functions. Now let f : A ! R
be an arbitrary bounded function and (f

n

)
n2N be a sequence of step functions

converging uniformly to f . Then (f
n

)
g

is a step function on g

�1 ·A and (f
n

)
g

!
(f)

g

uniformly. Then
Z

A

fdµ = lim
n

Z

A

f

n

dµ = lim
n

Z

g

�1·A
(f

n

)
g

dµ =

Z

g

�1·A
fdµ.

⇤

Fact 14.7. There are A,B ✓ R3
such that A

o 6= ;, Bo = ; but A ⇠ B.

Proof sketch. First, pick a countable dense D ✓ S

2. There are only countably
many rotations R so that D,R(D), R2(D), . . . are not pairwise disjoint. Since
there are uncountably many rotations, pick one so that they are pairwise dis-
joint. Using the usual shift trick, we see that S2 ⇠ S

2 \D. We can extend this
from S

2 to the unit ball by considering D

0 the set of radii whose endpoints are
in D. ⇤

Definition 14.8. A ✓ Rn is nowhere dense if A
o

= ;.
Fact 14.9.

• If A1, . . . , An

are nowhere dense, then

S
n

i=1 Ai

is nowhere dense.

• If A ⇠ B and A is nowhere dense, so is B.

Proof.

• It su�ces to show this for the case n = 2. A [B = A [ B, so we can
assume WLOG that A,B are closed. Assume there is an open nonempty
U ✓ A [ B. Consider U \ A = U \ (Rn \ A). U \ A ✓ B, so U \ A = ;.
But then U ✓ A; contradiction.

• Let A =
S

n

i=1 Ai

, B =
S

n

i=1 Bi

with A

i

= g

i

B

i

, g
i

isometries. A

i

✓ A, so

A

i

o ✓ A

o

Since isometries are continuous, (ie. take limit points to limit points)
A

i

= g

i

B

i

. Now if x 2 U ✓ B

i

with U open, then by the continuity of
g

�1
i

, g
i

x 2 g

i

U ✓ B

i

with g

i

U open. Therefore, B
i

o ✓ A

i

o

= ;. Then B

i

is nowhere dense. Since B is a union of nowhere dense sets, it is nowhere
dense.

⇤

2
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15 Paradoxes in Dimension  2

Definition 15.1. Let G be a group, S ✓ G finite nonempty, S = {g1, . . . , gn}.
Define B

S

(k) = {g
i1 . . . gil : l  k, 1  i

j

 n}. Let N
S

(k) = |B
S

(k)|.
It is clear that N

S

(k)  N

S

(k + 1).

Example 15.2. G = (Z,+). S = {�1, 0, 1}. B
S

(k) = {�k,�k + 1, . . . , 0, 1, . . . , k}
and N

S

(k) = 2k + 1.

Example 15.3. G = F2 = ha, bi, S = {a, b}. B
S

(k) = {x1 · · ·xl

: l  k, x

j

2 {a, b}}
and N

S

(k) = 2k+1 � 1.

Definition 15.4. G has polynomial growth if for every finite S ✓ G, there is
some M 2 R+, d 2 N so that N

S

(k)  Mk

d for all k.

Remark 15.5. If G is finitely generated, say by S0, then G has polynomial
growth i↵ there are M,d so that N

S0(k)  Mk

d. This holds because given any
other S

0, there is some k0 so that S ✓ B

S0(k). Then B

S

(k) ✓ B

S0(kk0) 
M(kk0)

d = (Mk

d

0)k
d. WLOG, we may assume that S0 is symmetric, ie. closed

under inverses.

Proposition 15.6. If G is abelian, then G has polynomial growth.

Proof. Let S = {g1, . . . gn} ✓ G. Then every element of B
S

(k) is of the form
g

a1
1 · · · gan

n

where a

i

2 {0, . . . , k}. So N

s

(k)  (k + 1)n  2nkn. ⇤

Theorem 15.7. G1, the group of isometries of R, has polynomial growth.

Proof. S = {'1, . . . ,'n

} ✓ G1. Then '

i

(x) = a

i

x + b

i

with a

i

2 {�1, 0, 1}.
Then ' = '

i1'i2 · · ·'ik = ax + b with a 2 {�1, 0, 1} and b =
P

n

i=1 cibi with
c

i

2 �k,�k + 1, . . . , k. Then N

S

(k)  3 · (2k + 1)n  (2 · 3n)kn. ⇤

Fact 15.8. N

S

(k + l)  N

S

(k)N
S

(l). In particular, N

S

(k)  (N
s

(1))k.

Proof. Let g = g

i1 · · · gi0k 2 B

S

(k) and h = g

i1 · · · gi0l 2 B

S

(l) for k

0  k and
l

0  l. Then gh 2 B

S

(k + l) and the map B

S

(k) ⇥ B

S

(l) ! B

S

(k + l) by
(g, h) 7! gh is onto. ⇤

Fact 15.9.

↵ = lim
k!1

k
p
N

S

(k) exists.

Note that by 15.8, 1  ↵  N

S

(1)

Proof. If l � k, we have l  k

⌅
l

k

⇧
+ k, so

N

S

(l)  N

S

(k

�
l

k

⌫
+ k)

N

S

(l)  N

S

(k)b
l
kc

N

s

(k)

N

S

(l)  N

S

(k)
l
k
N

s

(k)

N

S

(l)
1
l  N

S

(k)
1
k
N

s

(k)
1
l

3
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Let l ! 1, then
lim

l

N

S

(l)
1
l  N

S

(k)
1
k · 1.

Since k was arbitrary, we have

lim
l

N

S

(l)  lim
k

N

S

(k)
1
k
.

⇤

Definition 15.10. G is exponentially bounded if lim
k

N

s

(k)
1
k = 1 for any finite

S ✓ G.

Example 15.11. Any polynomial growth group is exponentially bounded.

Proof. N

S

(k)  Mk

d so N

S

(k)
1
k  M

1
k
k

d
k . Then

lim
k!1

N

S

(k)
1
k 

✓
lim
k!1

M

1
k

◆
lim
k!1

(k
1
k )d = 1

⇤

Example 15.12. F2 = ha, bi and S = {a, b}. N

S

(k) = 2k+1 � 1, so N

S

(k)
1
k =

(2k+1 � 1)
1
k and lim

k

N

S

(k)
1
k = 2 > 1. Therefore F2 is not exponentially

bounded.

4
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16 Paradoxes in Dimension  2 (cont.)

Theorem 16.1 (Sierpinski). If G acts on X and G is exponentially bounded,

then there are no non-empty G-paradoxical sets in X.

Corollary 16.2. There are no nonempty paradoxical sets in R1
.

Proof. Suppose ; 6= A ✓ X is a G-paradoxical set. A ⇠G B ⇠G C with
A = B t C. Let '1 : A ! B and '2 : A ! C be the bijections given by
equidecomposability. Fix x0 2 A and look at 'i1 · · ·'ik(x0) with ij 2 {1, 2}.

Assume (i1, . . . , ik) 6= (i01, . . . , i
0
k). Let j be minimal so that ij 6= i0j . Then

'ij · · ·'ik(x0) 6= 'i0j
· · ·'i0k

(x0), since one of these lies in C and the other in B.

Then 'i1 · · ·'ij�1 is injective, so 'i1 · · ·'ik(x0) 6= 'i01
· · ·'i0k

(x0).
Let S = {g1, . . . , gm, h1, . . . , hn}, where the gi are congruences between the

pieces ofA andB and hi are congruences betweenA and C. Then 'i1 · · ·'ik(x0) =
f1 · · · fk(x0) with fj 2 S. This map is injective, so Ns(k) � 2k and G is not
exponentially bounded. ⇤

Proposition 16.3. If G is not exponentially bounded, then for any ↵ > 1, there
is a finite S ✓ G and n 2 N so that Ns(k) � ↵k

if k > n.

Proof. Since G is not exponentially bounded, there is finite S0 ✓ G with

lim
k!1

NS0(k)
1
k = � > 1.

Let m0 be such that �m0 > ↵. Then NS0(m0k)
1

m0k ! �. Then for large
enough k, NS0(m0k) � ↵k. Let S = BS0(m0k). Then BS0(mk) ✓ BS(k) and
NS(k) � NS0(mk) � ↵k. ⇤

Theorem 16.4 (Mazurkiewicz–Sierpinski). There is a countable set A 6= ; in

R2
and a partition A = A1 tA2 such that A ⇡ A1 ⇡ A2.

1
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Proof. Think of R2 as C. Consider N[z], the set of polynomials with non-
negative integer coe�cients. Let c 2 C be transcendental with |c| = 1. Let
A = {p(c) : p 2 N[z]}. Let A1 = A + 1 and A2 = cA, so that A ⇡ A1 ⇡ A2.
Let p 2 N[z] with p =

Pn
i=0 anz

n. If a0 = 0, then p = z
Pn

i=1 anz
n�1 = zp0, so

p(c) 2 A1. Also, p(c) 62 A2, since there is no p0 such that p = p0 + 1. Similarly,
if a0 6= 0, then p(c) 2 A2 and p(c) 62 A1. Therefore A = A1 tA2. ⇤

Definition 16.5. A group G is amenable if there is a G-invariant fam µ :
P(G) ! [0, 1] such that µ(G) = 1.

Recall this theorem of Tarski, which will be proven later:

Theorem 16.6. If G acts on X and A ✓ X, then A is not G-paradoxical i↵

there is a G-invariant fam µ : P(X) ! [0,1] with µ(A) = 1.

So G is not paradoxical i↵ G is amenable.

Definition 16.7. G is supramenable if for any nonempty A ✓ G there is a
G-invariant fam µ : P(G) ! [0,1] with µ(A) = 1.

Applying Tarski’s theorem again, G is supramenable i↵ G has no nonempty
paradoxical sets.

Proposition 16.8. For a group G, we have the following chain of implications:

G abelian ) G has polynomial growth ) G is exponentially bounded ) G
is supramenable ) G is amenable.

Proof. We’ve proven the first two implications already, and the last is obvious.
The third follows from 16.1 and 16.6. ⇤

Definition 16.9. A group G is solvable if there is a sequence 0 = H0 E H1 E
· · · E Hn = G such that Hi+1/Hi is abelian.

Theorem 16.10. G2 is solvable.

Proof. We claim {1} E T2 E SG2 E G2, where T2 is the group of translations
and SG2 is the group of direct isometries.

Obviously, {1} E T2 with T2/ {1} ⇠= T2
⇠= (R2,+) abelian.

Given ' 2 SG2, let '⇤ be the corresponding orthogonal transformation.
' 7! '⇤ is a surjective homormorphism onto SO2 whose kernel is T2. Then
SG2/T2

⇠= SO2
⇠= (S1, ·) is abelian.

Consider the map ' 7! det'⇤. It is a surjective homomorphism from G2

onto the group of order 2 with kernel SG2. So G2/SG2
⇠= ({�1, 1} , ·) is abelian.

⇤

Theorem 16.11. Every solvable group is amenable.

Proof. It is enough to check that if G E H and G and H/G are amenable, then
H is amenable. Let µ, ⌫ be translation-invariant fams on G,H/G respectively
with µ(G) = 1 = ⌫(G/H). If C = hG, define µC(B) = µ(h�1B). For this to

2
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be well-defined, it must be independent of the choice of h. Assume hG = h1G.
Then h�1

1 h 2 G, so µ(h�1
1 B) = µ((h�1

1 h)h�1B) = µ(h�1B).
Given A ✓ H and C 2 H/G, let fA(C) = µC(A \ C). So let �(A) =R

H/G
fAd⌫. Let’s check that � is a fam.

• �(;) = 0

• �(H) = 1 because fH is the constant 1 function

• �(A [B) = �(A) + �(B) when A \B = ; because fA[B = fA + fB

Now let’s check that � is H-invariant. Let A ✓ H, h0 2 H. We need to check
that �(h0A) = �(A).

fh0A(C) = µC(h0A \ C)

= �(A)

fh0A(C) = (fA)h�1
0 G(C)

�(h0A) =

Z

H/G

fh0Ad⌫

=

Z

H/G

fAd⌫

=

Z

H/G

(fA)h�1
0 Gd⌫

= �(A)

⇤

Theorem 16.12. Let G  Gn be amenable. Then there exists a G-invariant

fam µ : P(Rn) ! [0,1] which extends Lebesgue measure.

Corollary 16.13. There are no bounded paradoxical sets in R2
with nonempty

interior.

Proof of Corollary. G2 is amenable, so there is an isometry invariant fam µ
extending Lebesgue measure. If A is bounded with nonempty interior, then
0 < µ(A) < 1, so µ(A) 6= 2µ(A). ⇤

Corollary 16.14. There is a translation-invariant fam µ : P(Rn) ! [0,1]
extending Lebesgue measure.

3
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17 Paradoxes in R2

Theorem 17.1. Let G  Gn be amenable. Then there is a G-invariant fam

µ : P(Rn
) ! [0,1] which extends Lebesgue measure.

Corollary 17.2. There exists a fam on P(R2
) which is isometry-invariant.

Therefore, R2
has no nonempty paradoxical sets that are bounded with nonempty

interior.

Corollary 17.3. Two polygons in R2
are equidecomposable i↵ they are congru-

ent by dissection (ie. have the same area)

Proof of Corollary 17.3. We’ve seen in Section 13 that congruence by dissection

implies equidecomposability. Let µ be as in 17.2. Then if P,Q are equidecom-

posable, µ(P ) = µ(Q). Since polygons are Lebesgue measurable, m2(P ) =

µ(P ) = µ(Q) = m2(Q). ⇤

Proof of Theorem 17.1. By the fam extension theorem, there is a fam ⌫ : P(Rn
) !

[0,1] which extends Lebesgue measure. Fix a fam � : P(G) ! [0, 1] which
is left invariant with �(G) = 1. For A ✓ Rn

define fA : G ! [0,1] by

fA(g) = ⌫(g�1A). Then define

µ(A) =

(R
G fA(g)d�(g), if fA is bounded

1, otherwise

See that this is a fam extending Lebesgue measure:

• µ(;) = 0

• A,B ✓ Rn
, A \ B = ;. If either fA or fB is unbounded, then so is

fA[B and µ(A [ B) = 1 = µ(A) + µ(B). If both are bounded, then

fA[B = fA + fB , so µ(A [B) = µ(A) + µ(B).

• Let A 2 LM(Rn
). Then fA(g) = ⌫(g�1A) = mn(g

�1A) = mn(A) so

µ(A) =

R
G fAd� = mn(A).

1
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Now we see that µ is G-invariant. Fix h 2 G. Then

fh·A(g) = ⌫(g�1h ·A)

fh·A(g) = fA(h
�1g)

fh·A(g) = (fA)h�1
(g)

So fh·A = (fA)h�1
. Then

µ(h ·A) =

Z

G
fh·Ad�

µ(h ·A) =

Z

G
(fA)h�1

d�

µ(h ·A) =

Z

G
(fA)d�

µ(h ·A) = µ(A)

⇤

Theorem 17.4. Let G act on X.

(i) If G is amenable, then there is a G-invariant fam on P(X) such that

µ(X) = 1.

(ii) If G is supramenable, then for every nonempty A ✓ X, there exists a

G-invariant fam µ on P(X) such that µ(A) = 1.

Corollary 17.5. G2 is not supramenable. (By 16.4, it has a nonempty para-

doxical set when acting on R2
, which breaks (ii))

Proof. We’ll just prove (ii); it’s clear that (i) follows from the same argument.

Fix x0 2 X with G · x0 \A 6= ;. Let A0 = {g 2 G : g · x0 2 A}. Let ⌫ be a

fam on P(G) which is invariant under left-translation and ⌫(A0) = 1. Then for

B ✓ X, define µ(B) = ⌫({g : g · x0 2 B}). µ is clearly a fam. µ(A) = ⌫(A) = 1.

Now

µ(h ·B) = ⌫({g : g · x0 2 h ·B})
µ(h ·B) = ⌫(

�
g : h�1g · x0 2 B

 
)

µ(h ·B) = ⌫({hf : f · x0 2 B})
µ(h ·B) = ⌫(h {f : f · x0 2 B})
µ(h ·B) = ⌫({f : f · x0 2 B})
µ(h ·B) = µ(B)

⇤

2
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Theorem 17.6 (Invariant Extension Theorem). Let G be amenable. Let A ✓
P(X) be G-invariant algebra of sets (ie. A is closed under the action of G).

Suppose R ✓ A is a G-invariant subring of A. Let µR be a G-invariant fam on

R. Then there is a G-invariant fam µA on A extending R.

Proof. This is a generalization of 17.1, where R = LM(Rn
) and A = P(Rn

).

Let � be a measure on P(G) witnessing the amenability of G. Let µA extend

µR by the fam extension theorem. Then put µ(B) =

R
G µA(g

�1B)d�. ⇤

18 Amenability

Let’s recall the definition:

Definition 18.1. A group G is amenable if there is a fam µ : P(G) ! [0, 1]
such that µ(G) = 1 and invariant under left-translation, ie. µ(gA) = µ(A) for

g 2 G, A ✓ G.

Example 18.2. Finite groups are amenable with the measure µ(A) =

|A|
|G| .

Example 18.3. Consider the group (Z,+). Let A ✓ Z and ⌫ a fam on P(N)
with ⌫(N) = 1 and ⌫({n}) = 0. Define

µ(A) =

Z

A

|A \ {�n, . . . n}]|
2n+ 1

d⌫(n)

It’s easy to see that µ is a fam. Let’s check that µ(k +A) = µ(A).

|µ(k +A)� µ(A)| 
Z ����

|(k +A) \ [�n, n]|
2n+ 1

� |A \ [�n, n]|
2n+ 1

���� d⌫(n)

|µ(k +A)� µ(A)| 
Z ����

|A \ [�k � n,�k + n]|
2n+ 1

� |A \ [�n, n]|
2n+ 1

���� d⌫(n)

|µ(k +A)� µ(A)| 
Z

2k

2n+ 1

d⌫(n)

|µ(k +A)� µ(A)| = 0

Note that whenever f : N ! R is such that limn!1 f(n) = 0, then

R
N fd⌫ = 0

because

R
N fd⌫ =

R
[0,N ] fd⌫+

R
[N,1] fd⌫, where the first part is 0 and the second

part is < " for large enough N .

Proposition 18.4. A subgroup of an amenable group is amenable.

Proof. Say H is amenable and G  H. Consider the right-cosets Gh, h 2 H,

of G in H. Let S ✓ H contain exactly one element from each coset. Let ⌫ be

a H-invariant fam on P(H) such that ⌫(H) = 1. Define a fam µ on P(G) with

µ(G) = 1 by µ(A) = ⌫(AS). The fact that µ is a fam follows easily from the

fact that ⌫ is a fam. Now

µ(gA) = ⌫((gA)S) = ⌫(g(AS)) = ⌫(AS) = µ(A)

⇤

3
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Proposition 18.5. If G is amenable and N E G, then G/N is amenable.

Equivalently, if G is amenable and f : G ! H is a surjective homomorphism,

then H is amenable.

Proof. Let f : G ! H be a surjective homomorphism. Let ⌫ be a measure on

P(G) witnessing the amenability of G. Let µ on P(H) be the push-forward

measure µ(B) = ⌫(f�1
(B)) ⇤

Proposition 18.6. • If N E G with N,G/N amenable, then G is amenable.

• If G,H are amenable, then so is G⇥H.

Proof. We proved the first statement when proving that solvable groups are

amenable (16.11). The second statement is a corollary of the first, as G E G⇥H
and (G⇥H)/G ⇠

=

H. ⇤

Proposition 18.7. If G is amenable, then there is a fam µ on G with µ(G) = 1

and µ is both left- and right-invariant.

Proof. Let µl be a left-invariant fam on G with µl(G) = 1. Define µr(A) =

µl(A
�1

). Then µr is a right-invariant fam on G with µr(G) = 1. Now define

µ : P(G) ! [0, 1] by

µ(A) =

Z

G
µl(Ag�1

)dµr(g)

µ is a fam with µ(G) = 1. It is left-invariant by the left-invariance of µl:

µ(hA) =

Z

G
µl(hAg�1

)dµr(g) =

Z

G
µl(Ag�1

)dµr(g) = µ(A)

Let f(g) = µl(Ag�1
); we’ll show the right-invariance of µ.

µ(Ah) =

Z

G
µl(Ahg�1

)dµr(g)

µ(Ah) =

Z

G
µl(A(gh�1

)

�1
)dµr(g)

µ(Ah) =

Z

G
f(gh�1

)dµr(g)

µ(Ah) =

Z

G
f(g)dµr(g)

µ(Ah) = µ(A)

where the fourth step comes from the right-invariance of µr. ⇤
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19 Amenable Groups

Theorem 19.1. Let (Gi)i2I be subgroups of G so that for any finite S ✓ G,

there is an i 2 I with S ✓ Gi. If each Gi is amenable, so is G.

Corollary 19.2. If every finitely generated subgroup of G is amenable, so is G.

Proof of 19.1. For each A ✓ G and r 2 R, introduce a propositional variable

pA,r. Intuitively, pA,r is true i↵ µ(A) � r. Let � be the following set of formulas:

1. pA,0 for each A ✓ G.

2. pA,q ) pA,r for A ✓ G, q � r.

3. (pA,q ^ pB,r) ) pA[B,q+r for A,B ✓ G, A \B = ;, q, r 2 R

4. (¬pA,q ^ ¬pB,r) ) ¬pA[B,q+r for A,B ✓ G, A \B = ;, q, r 2 R

5. pA,q ) pB,q for A ✓ B ✓ G, q 2 R

6. pG,r for each r  1

7. ¬pG,r for each r > 1

8. pA,r , pgA,r for A ✓ G, g 2 G, r 2 R

If a valuation v satisfies �, then define µ : P(G) ! [0, 1] by

µ(A) = sup {r 2 R : v(pA,r) = 1}

This works just as in the proof of the fam extension theorem. To find such a v
we’ll use the Compactness Theorem. Fix finite �0 ✓ �. Let {gi}in ✓ G be all

of the group elements appearing in �0. In fact, �0 need not be finite as long as

only finitely many group elements appear. By assumption, there is an amenable

Gi  G with {gi}in ✓ Gi. Let µi be a measure witnessing the amenability of

Gi. Define µ̃ : P(G) ! [0, 1] by

µ̃(A) = µi(A \Gi)

1
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Then µ̃ is a fam on P(G) with µ̃(G) = 1. It’s also left Gi-invariant:

µ̃(gA) = µi(gA \Gi)

µ̃(gA) = µi(gA \ gGi)

µ̃(gA) = µi(g(A \Gi))

µ̃(gA) = µi(A \Gi)

µ̃(gA) = µ̃(A)

Therefore, �0 is satisfiable and by compactness � is. ⇤

Definition 19.3. A group satisfies the Følner condition if for each finite S ✓ G,

" > 0, there is a finite nonempty F ✓ G so that for all g 2 S, |gF4F |
|F | < ".

Example 19.4. If G is finite, let F = G.

Example 19.5. (Z,+). Fix finite S ✓ Z. Find k so that S ✓ [�k, k]. Take n so

that n > k
" and let F = [�n, n]. Then if m 2 F ,

|(m+ F )4F |
|F |  2 |m|

2n+ 1

 2k

2n+ 1

< ".

Example 19.6. (Z2,+). Let S ✓ [�k, k]2, " > 0. Let F = [�n, n]2. Then if

g 2 S,
|(F + g)4F |

|F |  4(2n+ 1)k

(2n+ 1)

2
=

4k

2n+ 1

.

So we can clearly pick n large enough so that the quotient is less than ".

Proposition 19.7. A countably infinite group G satisfies the Følner condition

i↵ there is a sequence (Fn) of nonempty finite subsets of G such that

8g 2 G


lim

n!1

|gFn4Fn|
|Fn|

= 0

�

(Fn) is called a Følner sequence.

Proof. Let G = {g1, g2, . . .} satisfy the Følner condition. For each n > 0, let Fn

be finite nonempty such that for all g 2 {g1, . . . , gn}, |gFn4Fn|
|Fn| < 1

n . Then (Fn)

is a Følner sequence.

Fix a Følner sequence (Fn). Let S ✓ G be finite, " > 0. let N 2 Z+
be large

enough that

8n � N8g 2 S


|gFn4Fn|

|Fn|
< "

�

Take F = FN ; G satisfies the Følner condition. ⇤

2
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20 Amenable Groups (cont.)

Theorem 20.1. Let G be a group. The following are equivalent:

1. G is amenable

2. G satisfies the Følner condition

3. G is not paradoxical.

Before we can prove this, we’ll need a theorem of Hall.

Definition 20.2. If V is a set and E ✓ V

2 is symmetric and irreflexive, then
(V,E) is a graph. A bipartite graph has a vertex partition V = X t Y with
¬xEx

0 if x, x 2 X and ¬yEy

0 if y, y0 2 Y . A perfect (1, k)-matching M ✓ E

is such that for all x 2 X, there are exactly k distinct y 2 Y so that xEy and
for all y 2 Y , there is exactly one x 2 X with xEy. Equivalently, a perfect
(1, k)-matching is a k-to-1 function ' : Y ! X (that is,

��
'

�1(x)
�� = k) with

graph(') ✓ E. A perfect (1, 1)-matching is often called a perfect matching. If
A ✓ V , then the neighbors of A are N(A) = {v 2 V : 9a 2 A[aEv]}.

Theorem 20.3 (Hall (1, k)-matching theorem). Let F be a locally finite bipar-
tite graph (every vertex has only finitely many neighbors) with vertices X t Y .
There is a perfect (1, k)-matching i↵ for all finite A ✓ X,B ✓ Y , |N(A)| � k |A|
and |N(B)| � 1

k |B|.

Proof of 20.1. We already have 1 ) 3.

(2)1) Assume G is countable. Then fix a Følner sequence (Fn). Let µ be a
fam on P(N) such that µ({n}) = 0, µ(N) = 1. Define ⌫ : P(G) ! [0, 1] by

⌫(A) =

Z

N

|A \ Fn|
|Fn|

dµ(n)

1
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Clearly ⌫ is a fam on F and ⌫(G) = 1. Fix g 2 G.

|⌫(gA)� ⌫(A)| =
����
Z

N

✓
|gA \ Fn|

|Fn|
� |A \ Fn|

|Fn|

◆
dµ(n)

����

|⌫(gA)� ⌫(A)| 
Z

N

����
|gA \ Fn|

|Fn|
� |A \ Fn|

|Fn|

���� dµ(n)

|⌫(gA)� ⌫(A)| 
Z

N

�����

��
A \ g

�1
Fn

��
|Fn|

� |A \ Fn|
|Fn|

����� dµ(n)

|⌫(gA)� ⌫(A)| 
Z

N

��
g

�1
Fn4Fn

��
|Fn|

dµ(n)

|⌫(gA)� ⌫(A)| = 0

⌫(gA) = ⌫(A)

Now let G be arbitrary. For each finite S ✓ G, " 2 Q+, let F (S, ") ✓ G be
finite nonempty with

8g 2 S


|gF (S, ")4F (S, ")|

|F (S, ")| < "

�

For each finite S ✓ G, let S0 = hSi and

Sn+1 = Sn [
[

finite S0✓S
"2Q+

F (S0
, ")

S0  S1  · · · with each Sn countable. Then S1 =
S

n Sn is countable and
satisfies the Følner condition. Then S1 is amenable containing S. S was an
arbitrary finite set, so by Theorem 19.1, G is amenable.

(3)2) Assume G fails the Følner condition — we’ll show that G is paradox-
ical. Let S0 ✓ G and 2"0 > 0 be such that for every finite nonempty F ✓ G,

there is s0 2 S0,
|s0F4F |

|F | � 2"0. We’ll need some lemmas:

Lemma 1 There is � > 1 and a finite S� ✓ F with 1 2 S� and for all
nonempty finite F ✓ G, |S�F | � � |F |.

Proof of lemma 1 We have |s0F4F | = 2 |F \ s0F |. Let S� = S0 [ {1}.
Then for each finite F ✓ G, S�F ◆ F and S�F \ F = S0F \ F . So

|S�F |� |F | = |S0F \ F | � |s0F \ F | = |F \ s0F | � "0 |F |

Then |S�F | � (1 + "0) |F |. Set � = 1 + "0.

Lemma 2 (Amplification) There is a nonempty finite S ✓ G so that for
all finite nonempty F ✓ G, |SF | � 2 |F |.

2
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Proof of lemma 2 Pick n so that �n � 2. Then |Sn
�F | =

��
S�(S

n�1
� F )

�� =
�

��
S

n�1
� F

��. By induction, |Sn
�F | � 2 |F |.

(3)2) Consider the graph (X t Y,E) where X = G = Y and gEh , 9s 2
S[sg = h]. If A ✓ X is finite, then N(A) = |SA| � 2 |A|. Then take finite
B ✓ Y . N(B) = S

�1
B ◆ s

�1
0 B, so |N(B)| �

��
s

�1
0 B

�� = |B| � 1
2 |B|. By

20.3, there exists a perfect (1, 2)-matching. In other words, there is a 2-to-1
surjection ' : G ! G. For h 2 G let '�1(h) = { 1(h), 2(h)} (here we invoke
Choice). Now G =  1(G) t  2(G). For s 2 S, let As = {h :  1(h) = sh}.
Similarly, let Bs = {h :  2(h) = sh}. Then G =

F
s2S As =

F
s2S Bs and

 1(G) =
F

s2S sAs,  2(G) =
F

s2S sBs. Therefore, G is paradoxical. ⇤

Corollary 20.4. If G is exponentially bounded, then G is amenable.

Proof of 20.3. The forward direction is trivial.
For the backwards direction, first assume the k = 1 case; we’ll prove the

general case from it. Let G = (X t Y,E) be a graph satisfying the hypothesis
of the theorem (we’ll refer to this as Hall’s condition from now on). Define

G

0 = (
Fk

i Xi t Y,E

0) with Xi as copies of X. If x 2 X, let xi be its copy in Xi.
We say xiE

0
y in G

0 if xEy in G.
Fix finite A

0 ✓ X

0. Define a projection A

0 = {x 2 X : 9i[xi 2 A

0]}. Then
|A0|  k

��
A

0
�� and N

G0
(A0) = N

G(A0) so

���NG0
(A0)

��� =
��
N

G(A0)
�� � k

��
A

0
�� � |A0|

Now fix finite B

0 ✓ Y . Then

��
N

G(B0)
�� = k

��
N

G(B0)
�� � k

1

k

|B0| = |B0|

Apply the k = 1 case to get a perfect matching M

0 on G

0. Then define a perfect
(1, k)-matching M on G by

(x, y) 2 M , 9i(xi, y) 2 M

0

The k = 1 Case Using a Schroeder–Bernstein argument, we can reduce this
to a one-sided version:

If for all finite A ✓ X we have |N(A)| � |A|, then there exists an injection
' : X ! Y such that (x,'(x)) is an edge.

Finite case We’ll induct on |X| = m. The m = 1 case is obvious.
Assume that there is X

0 ✓ X with 1  |X 0| < m and |N(X 0)| = |X 0|.
Use the induction hypothesis to find an injection '0 : X 0 ! N(X 0) consisting of
edges. Let X 00 = X\X 0. Restrict the graph to X

00
, Y \N(X 0). If B ✓ X

00, apply
Hall’s condition to B [X

0. Then Hall’s condition is satisfied for this graph, so
there is an injection '00 : X 00 ! Y consisting of edges. Take ' = '

0 t '00.

3
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Now assume that for all X 0 ✓ X, 1  |X 0| < m, we have |N(X 0)| > |X 0|.
Now let A

0 = X \ {x0} and B

0 = Y \ {y0} with x0Ey0. Then Hall’s condition
holds on the induced subgraph on A

0 tB

0, so there is an injection '0 : A0 ! B

0

consisting of edges. Then ' = '

0 t (x0 7! y0) is as desired.

X is infinite If Hall’s condition holds for a graph, it hold in every con-
nected component. Then it su�ces to consider connected graphs. Then X,Y

are countable, since the graph is locally finite. Let X = {x1, x2, . . .} with
xi 6= xj when i 6= j. By the finite case, for each n, there is an injection
'n : {x1, . . . , xn} ! N({x1, . . . , xn}) consisting of edges. Consider the se-
quence 'n(x1). Since the graph is locally finite, there is a constant subsequence
n0 < n1 < · · · , 'nk(x1) = y1. By the same argument, we can find a yi for each
xi, and xi 7! yi is the desired matching.

⇤
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21 Amenable Groups (cont.)

Conjecture 21.1 (von Neumman Conjecture (M. Day)). A group G is amenable

i↵ F2 6 G.

In the 1980s, Olshaanski showed that this is false. In fact, there are nona-
menable groups without any elements of infinite order.

Fact 21.2. If G  GL
n

(R), then von Neumman’s Conjecture holds.

Proposition 21.3. If G is amenable and G acts on X, then X is not paradox-

ical. In fact, there is a G-invariant fam µ : P(X) ! [0, 1] with µ(X) = 1.

Proof. Let ⌫ witness the amenability of G. Let x0 2 X and consider the map
f : G ! X given by f(g) = g · x0. Let µ = f⇤⌫, that is, µ(A) = ⌫(f�1(A)). ⇤

Definition 21.4. Let G act onX. This action is free if for every g 6= 1, g·x 6= x.

Theorem 21.5. Let G be a nonamenable group. If G acts freely on X, then X
is G-paradoxical.

Corollary 21.6. If G acts freely on X, then G is amenable i↵ X is not G-

paradoxical.

Proof of Theorem 21.5. Let A,B ✓ G with A t B = G and G ⇠ A ⇠ B. By
Choice, let C ✓ X have one representative from every G-orbit of X. Now for
x 2 C, A · x t B · x = G · x. Let A⇤ =

S
x2C

A · x and B⇤ =
S

x2C

B · x.
Then X = A⇤ t B⇤. Let A =

F
n

i=1 Ai

, G =
F

n

i=1 Hi

and A
i

= g
i

H
i

. Let
A⇤

i

=
S

x2C

A
i

· x and H⇤
i

=
S

x2C

H
i

· x. Then A⇤ =
F

n

i=1 A
⇤
i

, X =
F

n

i=1 H
⇤
i

,
and

g
i

·H⇤
i

= g
i

[

x2C

H
i

· x =
[

x2C

g
i

H
i

· x =

nG

i=1

A
i

· x = A⇤
i

Then X ⇠
G

A⇤ and similarly X ⇠
G

B⇤. ⇤

In fact, we can strengthen this theorem.

1
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Definition 21.7. For each x 2 X is stabilizerG
x

is defined byG
x

= {g 2 G : g · x = x} 
G. The action is free i↵ G

x

= {1} for each x.

Theorem 21.8. Let G act on X. If for each x 2 X, the stabilizer G
x

is

amenable, then G is amenable i↵ X admits a G-invariant fam µ : P(X) ! [0, 1]
with µ(X) = 1.

Proof. As before, let C have one point from each orbit. For x 2 C, look at the
map ⇡

x

(g) = g · x. If y = g · x, then ⇡�1
x

(y) = gG
x

. So there is a one-to-one
correspondence between G ·x and the set of left cosets {gG

x

}. Since each G
x

is
amenable, we can choose a G

x

-invariant fam µ
x

. By translation, we can define
a fam µ

C

for each left coset CG
x

.
For each A ✓ G, define f

A

: X ! [0, 1] by

f
A

(y) = µ
⇡

�1
x

(y)(A \ ⇡�1
x

(y))

where x is the point of C in the orbit of y.
Now define ⌫ : P(G) ! [0, 1] by ⌫(A) =

R
X

f
A

dµ. Clearly ⌫ is a fam with
⌫(G) = 1.

f
gA

(y) = µ
⇡

�1
x

(y)(gA \ ⇡�1
x

(y))

f
gA

(y) = µ
g

�1
⇡

�1
x

(y)(A \ g�1⇡�1
x

(y))

f
gA

(y) = µ
⇡

�1
x

(g�1·y)(A \ ⇡�1
x

(g�1 · y))

f
gA

(y) = f
A

(g�1 · y)

Then

f
gA

= (f
A

)
g

�1

⌫(gA) =

Z
f
gA

dµ

⌫(gA) =

Z
(f

A

)
g

�1dµ

⌫(gA) =

Z
f
A

dµ

⌫(gA) = ⌫(A)

⇤

Proposition 21.9. G
n

 GL
n+1(R)

Proof. Let S 2 G
n

. Write S(~x) = U
S

(~x) +~a
S

, where U
S

2 O
n

and ~a
S

2 Rn. In
particular, S � T (~x) = U

S

� U
T

(~x) + U
S

(~a
T

) +~a
S

. View U
S

as an n⇥ n matrix
and write

M(S) =

✓
U
S

~a
S

~0 1

◆
2 GL

n+1(R)

It’s easy to check that M : G
n

! GL
n+1(R) is an injective homomorphism. ⇤

2
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Proposition 21.10. Let G ✓ SO3. G acts on S2
by evaluation. The following

are equivalent:

1. G is amenable,

2. F2 6 G,

3. S2
is not G-paradoxical,

4. There is a G-invariant fam on P(S2).

Proof. 1 and 2 are equivalent by 21.2. 3 and 4 are equivalent by Tarski’s theo-
rem. For the equivalence of 1 and 4, we apply theorem 21.8. For any x, every
element of G

x

is a rotation about the axis between ~0 and ~x. So G
x

is abelian
therefore amenable. ⇤

22 The Banach–Tarski Paradox in Rn, n � 3

Theorem 22.1. F2  SO3.

Proof. Let e1, e2, e3 be the standard coordinate frame on R3. Let 0 < ✓ < ⇡

2
with cos ✓ = 1

3 . Let R rotate around e3 by ✓ and S rotate around e1 by ✓.
We’ll show that hR,Si ⇠= F2. We’ll show that any reduced word in

�
R±1, S±1

 

ending in R±1 is not the identity. (Not that if v is a reduced word ending in
S±1, v is the identity i↵ RvR�1 is.)

Let w be a reduced word ending inR±1. We claim that w(e1) =
�
a3�k, b

p
23�k, c3�k

�

with a, b, c 2 Z and 3 - b. (In particular, b 6= 0 so w(e1) 6= e1)
Proof by induction on |w|. First, let |w| = 1, so w = R±1.

R±1e1 =

0

@
cos ✓ ⌥ sin ✓ 0
± sin ✓ cos ✓ 0

0 0 1

1

A (1, 0, 0) =

 
1

3
,±2

p
2

3
, 0

!

Now let |w| = n+1 where the claim holds for words of length  n. If w = R±1w0,
where w0e1 = 3�k(a0, b0

p
2, c0), then

w(e1) = R±13�k(a0, b0
p
2, c0) = 3�k�1(a, b

p
2, c)

where a = a0 ⌥ 4b0, b = ±2a0 + b0, c = 3c0. Similarly, if w = S±1w0, then

w(e1) = S±13�k(a0, b0
p
2, c0) = 3�k�1(a, b

p
2, c)

where a = 3a0, b = b0 ⌥ 2c0, c = c0 ± 4b.
This proves the claim that a, b, c 2 Z; all that’s left to show is 3 - b. We

check the n = 2 case by hand. We have a0, b0, c0 = (1,±2, 0). Then either
w = R±1R±1 and b = ±2a0 + b0 = ±4 or w = S±1R±1 and b = b0 ⌥ 2c0 = 2.

Now let |w| > 2 and assume 3 - b holds for words of length n� 1.

3
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1. w = R±1S±1v.

b = ±2a0 + b0, where a0 = 3a00, so 3 - b.

2. w = S±1R±1v

Similarly, b = b0 ⌥ 2c0 where c0 = 3c00, so 3 - b.

3. w = R±1R±1v

b = ±2a0 + b0 where a0 = a00 ⌥ 4b0 and b0 = ±2a00 + b00. So b = 2b0 � 9b00

and 3 - b.

4. w = S±1S±1v

b = b0 ⌥ 2c0 where b0 = b00 ⌥ 2c00 and c0 = c00 ± 4b00 so b = 3b0 � 9b00 and
3 - b.

⇤

4



Ma191 Geometrical Paradoxes

Lecturer: Alexander Kechris

Notes taken by J Alex Stark

California Institute of Technology

Feb 26 2015

23 The Banach–Tarski Theorem in dimension �
3 (cont.)

Let G = hR,Si ⇠= F2 be the subgroup of SO3 discussed last time. Let D =
�

x 2 S2 : 9g 2 G[g 6= 1 ^ g · x = x]
 

. D is countable and fixed by G:

Lemma 23.1. D is G-invariant.

Proof. Let x 2 D so that for some h 2 G, h 6= 1, h · x = x. Then for g 2 G, we
have (gh�1g) · (g · x) = gh · x = g · (h · x) = g · x. Since gh�1g 2 G, we have
g · x 2 D. ⇤

Then S2 \D is also G-invariant.

Theorem 23.2 (Hausdor↵). There is a countable set D ✓ S2
such that S2 \D

is SO3-paradoxical (and therefore G3-paradoxical)

Proof. Consider G,D as before. G acts freely on S2 \D, so we’re done. ⇤

Proposition 23.3. For any countable set D ✓ S2
, S2 \D ⇠SO3 S2

.

Proof. We claim that there is a rotation so thatD,R(D), R2(D), . . . are pairwise
disjoint. Assuming that, putA =

F1
n=0 R

n(D) andB = S2\A. Then S2 = AtB
and S2 \D = R(A) tB, so S2 ⇠SO3 S2 \D.

Since D is countable, there is a line through the origin avoiding D. Let R✓ be
a rotation about this line by an angle ✓. LetX = {0 < ✓ < 2⇡ : 9x 2 D9y 2 D9n 2 N[Rn

✓ (x) = y]}.
For every x, y 2 D, n 2 N, there are finitely many ✓ such that Rn

✓ (x) = y.
Therefore X is countable. In particular, we can pick ✓ 62 X. Then for each
n 2 N , Rn

✓ (D) \ D = ;. Then for m > n, we have Rm
✓ (D) \ Rn

✓ (D) =
Rn

✓ (R
m�n
✓ (D) \D) = ; ⇤

Theorem 23.4 (Banach–Tarski, I). S2
is SO3-paradoxical.

Theorem 23.5 (Banach–Tarski, II). A closed ball in R3
is paradoxical.

1
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Proof. It’s enough to consider a ball centered at 0. WLOG, assume the ball
has radius 1. Using the shrinking map ~x ! ↵~x, 0 < ↵  1, it is clear that

B \
n

~0
o

is SO3-paradoxical. Now consider a circle containing the origin which

is contained in the unit ball. Rotating this circle by ↵⇡ with ↵ irrational shows

that B \
n

~0
o

⇠ B. ⇤

Theorem 23.6 (Banach–Tarski, III). If A,B ✓ R3
are bounded and have non-

empty interor, then A ⇠ B. In particular, any such set is paradoxical.

Proof. By Banach–Schroeder–Bernstein, it is enough to show that A � B.
Choose closed balls K,L with A ✓ K, L ✓ B. Then we just need to show
that K � L. By 23.5, we know that L ⇠

Fn
i=1 Li, where the Li are pair-

wise disjoint balls of the same radius as L. For large enough n, we can find
L0
1, . . . , L

0
n of the same radius as L such that K ✓

Sn
i=1 L

0
i. Let L00

1 = L0
1 and

L00
i = L0

i \
S

j<i L
00
j . Then K ✓

Fn
i=1 L

00
i �

Fn
i=1 Li ⇠ L and K � L. ⇤

Corollary 23.7. There is no isometry-invariant fam µ : P(R3) ! [0,1] such
that 0 < µ(B) < 1 where B is a unit ball. In particular, there is no such

extension of Lebesgue measure.

Theorem 23.8 (Banach–Tarski for dimension � 3). Let n � 3. Then

1. Sn�1
is SOn-paradoxical.

2. Any ball in Rn
is paradoxical.

3. Any two bounded sets in Rn
with nonempty interior are equidecomposable.

4. There is no isometry-invariant fam on P(Rn) such that 0 < µ(B) < 1
for B a unit ball. In particular, there is no such extension of Lebesgue

measure.

Proof. It’s enough to prove 1 by induction on n. We have the n = 3 case already.
By the inductive hypothesis, Sn�1 is SOn-paradoxical. Let Sn�1 ⇠SOn

A ⇠SOn B, say Sn�1 =
Fm

i=1 Ki and A =
Fm

i=1 Li, Ri 2 SOn, Ri(Ki) = Li,
B =

Fm
i=1 Mi, Si 2 SOn, Si(Mi) = Li.

Define ' : (Sn)⇤ = Sn \ {(0, . . . , 0,±1)} ! Sn�1 by

'(x1, . . . , xn, xn+1) =
(x1, . . . , xn)

|(x1, . . . , xn)|
.

Define R⇤
i , S

⇤
i 2 SOn+1 by

R⇤
i =

✓

Ri 0
0 1

◆

S⇤
i =

✓

Si 0
0 1

◆

.

Let K⇤
i = '�1(Ki) and define L⇤

i ,M
⇤
i , N

⇤
i similarly. Then (Sn)⇤ =

Fm
i=1 K

⇤
i

and A⇤ = '�1(A) =
Fm

i=1 L
⇤
i with R⇤

i (K
⇤
i ) = L⇤

i . Similarly, B⇤ = '�1(B) =

2
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Fm
i=1 M

⇤
i with S⇤

i (K
⇤
i ) = M⇤

i . So (S
n)⇤ = A⇤tB⇤ and (Sn)⇤ ⇠SOn+1 A⇤ ⇠SOn+1

B⇤. Therefore, (Sn)⇤ is SOn+1 paradoxical.
Next, we’ll show that Sn ⇠ (Sn)⇤. Let D = {(0, . . . , 0,±1)}. Define T 2

SOn+1 so that Tm(D) \ Tn(D) = ; for m 6= n. Say T (x1, . . . , xn�1, x, y) =
(x1, . . . , xn�1, (x+ iy)ei⇡✓) with ✓ irrational. Then Sn ⇠ Sn \D. ⇤

3
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24 Tarski’s Theorem

Theorem 24.1. Let G act on X and A ✓ X. Then A is not G-paradoxical i↵

there exists a G-invariant fam µ : P(X) ! [0,1] such that µ(A) = 1.

We’ve already given the backward direction. For the forward direction, we’ll
need new machinery.

Definition 24.2. If G acts on X, define X⇤ = X⇥N and G

⇤ = G⇥S1, where
S1 is the group of permutations of N. Then G

⇤ acts on X

⇤ by (g,�) · (x, n) =
(g · x,�(n)).

Definition 24.3. A set A ✓ X

⇤ is bounded if for some n,

A ✓
[

mn

X ⇥ {m}

Define B as the collection of all bounded subsets of X⇤. Let S = B/ ⇠G⇤ be
the set of all [A] = [A]⇠G⇤ for A 2 B.

Proposition 24.4.

1. For A,B ✓ X, A ⇠G B i↵ A⇥ {m} ⇠G⇤
B ⇥ {n} for m,n 2 N.

2. A is G-paradoxical i↵ A⇥ {0} ⇠G⇤
A⇥ {0, 1}.

Proof.

1 Let � be such that �(m) = n and let (gi)ik witness the equidecomposability
of A and B. Then ((gi,�))ik witnesses the equidecomposability of A ⇥ {m}
and B ⇥ {n}. For the reverse direction, just project (gi,�i) 7! gi.

1
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2 Assume A is G-paradoxical. Let A = B t C with A ⇠G⇤
B ⇠G⇤

C. Then
B ⇥ {0} ⇠G⇤

A⇥ {0} and C ⇥ {0} ⇠G⇤
A⇥ {1} by the above.

Now assume that A ⇥ {0} ⇠G⇤
A ⇥ {0, 1}. Let A ⇥ {0} =

Fk
i=1 Ai and

A⇥{0, 1} =
Fk

i=1 A
0
i with (gi,�i)Ai = A

0
i. Separate the A

0
i according to whether

�i(0) = 0 or �i(0) = 1, so that A ⇥ {0} =
Fm

i=1 Ci t
Fn

i=1 Di and A ⇥ {0} =Fm
i=1 C

0
i, A⇥{1} =

Fn
i=1 D

0
i with gi ·Ci = C

0
i and hi ·Di = D

0
i. Put C =

Fm
i=1 Ci

and D =
Fn

i=1 Di. We have C ⇠G⇤
A ⇥ {0} ⇠G⇤

A ⇥ {1} ⇠G⇤
D, so that

C ⇠G A ⇠G D and A is G-paradoxical. ⇤

From now on, identify X with X ⇥ {0}.

Definition 24.5. Given [A], [B] 2 S, define [A]+ [B] = [A0[B

0] where A0 ⇠G⇤

A,B

0 ⇠G⇤
B and A

0 \B

0 = ;.

This is well-defined. Let A00
, B

00 satisfy the same conditions as A0
, B

0. Then
A

00 ⇠G⇤
A ⇠G⇤

A

0 and B

00 ⇠G⇤
B ⇠G⇤

B

0, so A

00 [B

00 ⇠G⇤
A

0 [B

0.

Definition 24.6. Let n[A] = [A] + (n � 1)[A] and 1[A] = [A]. By 24.4, A is
paradoxical i↵ [A] = 2[A]. Let 0 = [;].

Proposition 24.7. (S,+, 0) is an abelian semigroup with identity.

Proof. Let ↵ = [A],� = [B], � = [C]. Let A0 ⇠G⇤
A,B

0 ⇠G⇤
B,C

0 ⇠G⇤
C with

A

0
, B

0
, C

0 pairwise disjoint. Then (↵+�)+� = [(A0[B0)[C 0] = [A0[(B0[C 0)] =
↵ + (� + �). Similarly, ↵ + � = [A0 [ B

0] = [B0 [ A

0] = � + ↵. Finally,
↵+ 0 = [A0 [ ;] = [A0] = ↵. ⇤

Definition 24.8. Define a relation on S by ↵  � i↵ 9�(↵+ � = �).

Proposition 24.9.

1.  is partial order on S with minimal element 0.

2. ↵  � ) ↵+ �  � + �.

3. [A]  [B] , A �G⇤
B.

Proof.

3. A �G⇤
B i↵ there is some C so that A t C ⇠G⇤

B. In other words,
[A] + [C] = [B].

2. ↵+ � = �. Then ↵+ � + � = � + �, so ↵+ �  � + �.

1. Reflexivity is trivial. For transitivity, assume ↵  �  �. Then � = ↵+ �

and � = � + " = ↵ + � + ", so ↵  �. Antisymmetry follows from 3 and
the Banach–Schroeder–Bernstein Theorem.

⇤

Theorem 24.10 (Cancellation Law). If ↵,� 2 S, n > 0, then n↵ = n� ) ↵ =
�.

2
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Corollary 24.11. If ↵ 2 S with (n+ 1)↵  n↵, then ↵ = 2↵.

Proof.

n↵ � (n+ 1)↵ = n↵+ ↵ � (n+ 1)↵+ ↵ = n↵+ 2↵ � · · · � n↵+ n↵ = 2n↵

But also n↵  2n↵, so by cancellation, ↵ = 2↵. ⇤

In any abelian semigroup (T ,+, 0) with identity, we can define a quasiorder
↵  � , 9�(↵+ � = �). (We don’t necessarily have antisymmetry.)

Definition 24.12. A fam on T is a map µ : T ! [0,1] such that µ(0) = 0
and µ(↵+ �) = µ(↵) + µ(�).

Theorem 24.13. Let (T ,+, 0) be an abelian semigroup with identity and let

↵0 2 T . Then the following are equivalent:

• (n+ 1)↵0 6 n↵0 for all n 2 N

• There is a fam µ on T with µ(↵0) = 1.

Proof of Tarski’s Theorem. Fix A ✓ X with A not G-paradoxical. Then [A] 6=
2[A]. By 24.11, (n + 1)↵ 6 n↵ for all n 2 N. By 24.13 for (S,+, 0), there is a
fam ⌫ : S ! [0,1] such that ⌫([A]) = 1. Then define a fam µ : P(X) ! [0,1]
by µ(B) = ⌫([B]). Let’s check the axioms:

• µ(;) = ⌫(0) = 0

• If B\C = ;, then µ(B[C) = ⌫([B[C]) = ⌫([B]+[C]) = ⌫([B])+⌫([C]) =
µ(B) + µ(C)

• µ(gB) = ⌫([gB]) = ⌫([B]) = µ(B).

⇤

We’ll need the following result to prove the Cancellation Law.

Theorem 24.14 (König). Every k-regular bipartite graph has a perfect match-

ing. (A graph is k-regular if the degree of every vertex is k.)

Proof. Call the parts of the graph A and B. By Hall’s theorem, it su�ces to
check that for finite X ✓ A and Y ✓ B, |N(X)| � |X| and |N(Y )| � |Y |. Fix
X ✓ A. Let x be the number of edges coming out of X, so x = k |X|. But also
k |N(X)| � x. Therefore, |N(X)| � |X|. ⇤

Proof of Cancellation Law. Say [A1] = ↵, [B1] = �. Let A =
Fn

i=1 Ai and
B =

Fn
i=1 Bi. Then n↵ = [A] with [Ai] = [A1] and similarly n� = [B] with

[Bi] = [B1]. Let ' witness the equidecomposability of A and B. Let fi witness
A1 ⇠G⇤

Ai, gi witness B1 ⇠G⇤
Bi.

Define a bipartite graph on A1 t B1 by the edge relation aEb if 9i9j[b =
g

�1
j ('(fi(a)))]. This graph is n-regular, so by König’s theorem, it has a perfect

matching ⇢ : A ! B. Let Aij =
�
a 2 A1 : ⇢(a) = g

�1
j ('(fi(a)))

 
. Define

Bij similarly. Then A1 =
F

i,j Aij and B1 =
F

i,j ⇢(Aij) =
F

i,j Bij . Then
Bij ⇠G⇤

Aij , giving us A1 ⇠ B1. ⇤
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25 Tarski’s Theorem

We still have one unproven fact in our proof of Tarski’s theorem, which we’ll
restate for convenience:

Theorem 25.1. Let (T ,+, 0) be an abelian semigroup with identity and let

↵0 2 T . Then the following are equivalent:

• (n+ 1)↵0 6 n↵0 for all n 2 N

• There is a fam µ on T with µ(↵0) = 1.

Proof. For the forward direction, call ↵ 2 T small if 9n[↵  n↵0]. Let T 0 =
{↵ 2 T : ↵ is small}. Then T 0 is a subsemigroup containing ↵0. If there is a
fam µ0 : T 0 ! [0,1] such that µ0(↵0) = 1, then there is a fam µ : T 0 ! [0,1]
such that µ(↵0) = 1, defined by

µ(↵) =

(
µ0(↵), if ↵ 2 T 0

1, otherwise

So we can assume WLOG that T 0 = T . We need this lemma:

Lemma 25.2. There is µ : T ! [0,1] such that µ(↵0) = 1 and for ↵i,�i 2 T ,

nX

i=1

↵i 
mX

j=1

�j )
nX

i=1

µ(↵i) 
mX

j=1

µ(�j)

Note that such a µ is a fam:

• 0 + ↵0  ↵0, so µ(0) + µ(↵0)  µ(↵0) and µ(0) = 0.

• (↵+�)  ↵+� and ↵+�  (↵+�), so µ(↵+�)  µ(↵)+µ(�)  µ(↵+�).

By compactness, it’s enough to prove the following finite version:

1
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Claim If T0 ✓ T is finite and ↵0 2 T0, then there exists µ0 : T0 ! [0,1]
such that µ0(↵0) = 1 and for any (↵i), (�i) in T0, we have

Pn
i=1 µ0(↵i) Pm

j=1 µ0(�j). Note that these sums might lie outside of T0.
We’ll prove this by induction on |T0|. If T0 = {↵0}, then define µ0(↵0) = 1.

Our claim reduces to checking m↵0  n↵0 ) m  n. This follows from the
assumption that (n+ 1)↵0 6 n↵0.

Now let T0 6= {↵0}. Pick ↵ 6= ↵0 and apply the induction hypothesis to
T0 \ {↵} to get µ0

0 : T0 ! [0,1]. Notice that since all elements of T are small,
µ0
0 is actually finite-valued. To extend µ0

0 to a µ0, let

µ0(↵) = inf

(Pm
i=1 µ

0
0(ai)�

Pn
j=1 µ

0
0(bj)

r

)

where r 2 Z+, ai, bj 2 T0 \ {↵} and
Pn

i=1 bi + r↵ 
Pm

j=1 aj . To show that this

works, we need to show that if ↵i,�j 2 T0 \ {↵}, s, t 2 N and
Pm

i=1 ↵i + s↵ Pn
j=1 �j + t↵, then

Pm
i=1 µ0(↵i)+sµ0(↵) 

Pn
j=1 µ0(�j)+ tµ0(↵). If s = t = 0,

this follows directly from the induction hypothesis.

Case s = 0, t > 0 We need to show that µ0(↵) �
P

µ0
0(↵i)�

P
µ0
0(bj)

t .
Equivalently,

P
µ0
0(ak)�

P
µ0
0(�l)

r
�

P
µ0
0(↵i)�

P
µ0
0(�j)

t

with r 2 Z+, ak, bl 2 T0 \ {↵}, and
P

bl + r↵ 
P

ak,
P

↵i 
P

�j + t↵.
Equivalently,

r
X

µ0
0(↵i) + t

X
µ0
0(bl)  r

X
µ0
0(�j) + t

X
µ0
0(ak)

By finite additivity, it’s enough to check that r
P

↵i+ t
P

bl  r
P

�j + t
P

ak.
We have

r
X

↵i  r
X

�j + rt↵,

t
X

bl + rt↵  t
X

ak,

r
X

↵i + t
X

bl  r
X

�j + t
X

ak.

Case s > 0 Let
P

bl + r↵ 
P

ak. Then we show that

X
µ0
0(↵i) + sµ0

0(↵) 
X

µ0
0(�j) + t

P
µ0
0(ak)�

P
µ0
0(bl)

r
.

Equivalently,

µ0
0(↵) 

t
P

µ0
0(ak) + r

P
µ0
0(�j)� (t

P
µ0
0(bl) + r

P
µ0
0(↵i))

rs
.

2
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It’s enough to check that

t
X

bl + r
X

↵i + rs↵  t
X

ak + r
X

�j

This follows from
P

bl + r↵ 
P

ak and
P

↵i + s↵ 
P

�k + t↵:

t
X

bl + tr↵  t
X

ak

r
X

↵i + rs↵  r
X

�j + tr↵

t
X

bl + r
X

↵i + rs↵  r
X

�k + t
X

ak

⇤

26 Countable Equidecompositions

Consider (X,A) with X a set and A a �-subalgebra of subsets of X. Let G act
on X such that for A 2 A and g 2 G, g · A 2 A. Let’s define a new notion of
equidecomposability A ⇠G,1 B , A ⇠1 B i↵ there exist gn · An = Bn with
A =

F1
n An, B =

F1
n Bn. We say X is countably G-paradoxical if A = B t C

and A ⇠1 B ⇠1 C. We’ll consider countably additive measures now. We have
a partial analogue of Tarski’s Theorem:

Fact 26.1. If there exists a G-invariant probability measure on A, then X is

not countably G-paradoxical.

But in fact, the converse is not true:

Theorem 26.2 (Chuaqui). There is an X which is not countably G-paradoxical

for which there is no G-invariant probability measure.

Let !1 be the unique uncountable well-order such that if ↵ 2 !1, then
{� : �  ↵} is countable. It follows that any countable A ✓ !1 is bounded.

Theorem 26.3 (Ulam). There is no countably additive probability measure

µ : P(!1) ! [0, 1] with µ({↵}) = 0 for all ↵ 2 !1.

Proof. Let Wy = {↵ 2 !1 : ↵ < y}. Let fy : Wy ! N be injective. Consider
f(x, y) = fy(x) for x < y, x, y 2 !1. Then x < x0 < y ) f(x, y) 6= f(x0, y). For
n 2 N, x 2 !1, put F

n
x = {y : x < y, f(x, y) = n}.

Consider the Ulam matrix with uncountably many columns and countably
many rows, where the element in the nth row and the ↵th column is Fn

↵ . The sets
in any row are pairwise disjoint. To see this, assume Fn

x \ Fn
x0 6= ; with x 6= x0.

Let y 2 Fn
x \ Fn

x0 with x, x0 < y. Then f(x, y) = n = f(x0, y); contradiction.
Additionally, the union of a column is co-countable, i.e.,

S
n F

n
x = !1 \ C

with C a countable set. To see this, let x < y with y 2 Fn
x , f(x, y) = n. SoS

n F
n
x ◆ !1 \ {y : y  x}.

3
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Finally, let µ be a countable additive probability measure on P(!1). If
(Xi)i2F is a family of subsets of !1, andXi\Xj = ; if i 6= j, then {i 2 F : µ(Xi) > 0}
is countable because the set

�
i 2 I : µ(Xi) � 1

n

 
is finite. (In fact, it has at

most n elements, since the measure of the whole space is 1).
So there is yn such that x > yn ) µ(Fn

x ) = 0. Let z > supn yn (again we
use the boundedness of countable sets in !1). Then µ(Fn

z ) = 0, but
S

n F
n
z =

!1 \ C. µ(C) =
P

x2C µ({x}) = 0, so µ(!1) = µ(!1 \ C) =
P

n µ(F
n
z ) = 0.

Contradiction. ⇤

Proof of Chuaqui’s Theorem. Take X = !1. Let G be the group of permuta-
tions of !1 with finite support. (Recall that ⇡ has finite support if {↵ 2 !1 : ⇡↵ 6= ↵}
is finite) We claim that !1 is not countably G-paradoxical.

Assume towards a contradiction that !1 = AtB with A ⇠1 B ⇠1 !1. Be-
cause !1 ⇠1 A, we have a bijection g : !1 ! A and a countable decomposition
!1 =

F1
n An and gn 2 G such that g�Ai = gi�Ai. Then the support of g is at

most the union of the supports of the gi, so g has countable support. Similarly,
there is a bijection h : !1 ! B with countable support. Let ↵ be outside the
supports of g and h. Then g(↵) = ↵ = h(↵) 2 A\B; contradiction. Therefore,
G is not countably G-paradoxical.

Assume µ : P(!1) ! [0, 1] is a G-invariant probability measure. Then there
must be some � for which µ({�}) = 0. For any ↵, there is g↵ 2 G so that
g↵(�) = ↵. Then we must have µ({↵}) = 0 for all ↵ 2 !1, contradicting Ulam’s
theorem. ⇤

Definition 26.4. A group G is a Polish group if there is a metric d : G ! [0,1)
which is separable and complete and g 7! gh, g 7! g�1 are continuous.

Example 26.5. hRn,+i , hGn, ·i are Polish groups.

Definition 26.6. X is a Polish space if it has a separable complete metric. Let
B(X) be the Borel subsets of X.

A map G ⇥X ! X is a Borel action if for every open set U ✓ X, the set
{(g, x) 2 G⇥X : g · x 2 U} is Borel in G⇥X.

Theorem 26.7 (Becker–Kechris). If G is a Polish group and X is a Polish

space, A = B(X) and G acts on X in a Borel way, the following are equivalent:

• X is not countably G-paradoxical with respect to A

• There exists a G-invariant probability measure µ : A ! [0, 1].

Proof sketch. We consider just the forward direction. First, reduce this to the
case when (g, x) 7! g · x is continuous. Choose H  G countable, dense. By
continuity, it’s enough to find a H-invariant measure. X is not countably G-
paradoxical, so X is not countably H-paradoxical. Let E be the equivalence
relation induced by this action. Then we apply

Theorem 26.8 (Nadkarni). If E is not compressible then there exists an H-

invariant measure µ : B(X) ! [0, 1].

4
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E is compressible if there is a Borel A ✓ X and a Borel bijection f : X ! A
such that f(x)Ex and X \A intersects every E-class. Note that f(B) \B = ;.

Now assume E is compressible. Let B = X \A. Let Bn = fn(B). If n > m,
fn(B)\fm(B) = ;. Each Bn meets every E-class and fn is a bijection between
B and Bn. let H = {hn : n 2 N} and let N : X ! N be such that N(x) is the
least n for which hn ·x 2 B. N is a Borel function. Let p0(x) = f2N(x)(hN(x) ·x)
and p1(x) = f2N(x)+1(hN(x) · x). Say C = p0(X) and D = p1(X). Clearly,
C \ D = ;. Since f respects E, we can represent p0 and p1 as piecewise H-
maps. Therefore, X ⇠H,1 C ⇠H,1 D; contradiction. ⇤

Problem 26.9. Under the same hypotheses of Theorem 26.7, are the following

equivalent for arbitrary A 2 A?

• A is not countably G-paradoxical with respect to A

• There exists a G-invariant measure µ : A ! [0, 1] with µ(A) = 1.

5
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27 Recent Results

27.1 Tarski Circle Squaring Problem

Recall that if A,B ✓ R2 are bounded and Lebesgue measurable and A ⇠ B,
then m2(A) = m2(B).

Problem 27.1. Let D,S be a closed disk and a square of the same area, re-

spectively. Is D ⇠ S?

Yes! Something stronger turns out to be true.

Theorem 27.2 (Laczkovich, 1990). Let A,B ✓ Rn
be bounded, Lebesgue mea-

surable sets with mn(A) = mn(B) > 0 and boundaries of box dimension less

than n. Then A ⇠Rn
B, i.e., they are equidecomposable using only translations.

Theorem 27.3 (Grabowski–Mathé–Pikhurko, 2015). In the decomposition of

the previous theorem, the pieces can be taken to be Lebesgue measurable.

Problem 27.4. Can this be done using Borel pieces?

Theorem 27.5 (Grabowski–Mathé–Pikhurko, 2014). If A,B ✓ Rn
, n � 3, are

bounded, Lebesgue measurable with non-empty interior and mn(A) = mn(B) >
0, then A ⇠ B with Lebesgue measurable pieces.

27.2 Marczewski Problem

Problem 27.6 (Marczewski, 1930). Is the unit ball in R3
paradoxical using sets

with the property of Baire?

Theorem 27.7 (Dougherty–Foreman, 1994). If A,B ✓ Rn
, n � 3, are bounded

with nonempty interior and have the property of Baire, then A ⇠ B using sets

with the property of Baire.

1



Alexander Kechris Ma191 Geometrical Paradoxes Mar 10 2015

Definition 27.8. If A ✓ Rn, then A is meager if A ✓
S

n Fn where the Fn are
closed with empty interior.

A ✓ Rn has the property of Baire if there is a Borel set B (equivalently, an
open set) such that B4A is meager. Notice that the class of sets with property
of Baire forms a �-algebra.

Theorem 27.9 (Marks–Unger, 2015). Let a group G act on a Polish space X

by Borel automorphisms of X. Then X is G-paradoxical i↵ X is G-paradoxical

using pieces with the property of Baire.

(x 7! g · x is a Borel automorphism if A 2 B(X) ) g ·A 2 B(X).)
However, there is a group action by Borel automorphisms on a Polish space

such and two Borel sets B0, B1 such that B0 ⇠G B1 but not by sets with the
property of Baire.

27.3 De Groot’s Problem

Problem 27.10 (De Groot, 1958). Can Banach–Tarski duplication be done

so that the pieces are moved continuously without overlapping? More precisely,

say A,B ✓ Rn
are continuously equidecomposable (write A ⇠c

B) if A =Fk
i=1 Ai, B =

Fk
i=1 Bi and there are continuous Gn-paths �

i : [0, 1] ! Gn such

that g

i(0) = id and g

i(1)(Ai) = Bi. Additionally, we require that for all t 2
[0, 1], �i(t)(Ai) \ �

j(t)(Aj) = ; for i 6= j.

Theorem 27.11 (Trevor Wilson, 2005). Let n � 2. If A,B ✓ Rn
are bounded,

and A ⇠ B, then A ⇠c
B.
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